| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex | ⊢ ( 𝑋  ∈  𝑉  →  𝑋  ∈  V ) | 
						
							| 2 |  | id | ⊢ ( 𝑢  =  𝑋  →  𝑢  =  𝑋 ) | 
						
							| 3 | 2 | sqxpeqd | ⊢ ( 𝑢  =  𝑋  →  ( 𝑢  ×  𝑢 )  =  ( 𝑋  ×  𝑋 ) ) | 
						
							| 4 | 3 | oveq2d | ⊢ ( 𝑢  =  𝑋  →  ( ℝ*  ↑m  ( 𝑢  ×  𝑢 ) )  =  ( ℝ*  ↑m  ( 𝑋  ×  𝑋 ) ) ) | 
						
							| 5 |  | raleq | ⊢ ( 𝑢  =  𝑋  →  ( ∀ 𝑧  ∈  𝑢 ( 𝑥 𝑑 𝑦 )  ≤  ( ( 𝑧 𝑑 𝑥 )  +𝑒  ( 𝑧 𝑑 𝑦 ) )  ↔  ∀ 𝑧  ∈  𝑋 ( 𝑥 𝑑 𝑦 )  ≤  ( ( 𝑧 𝑑 𝑥 )  +𝑒  ( 𝑧 𝑑 𝑦 ) ) ) ) | 
						
							| 6 | 5 | raleqbi1dv | ⊢ ( 𝑢  =  𝑋  →  ( ∀ 𝑦  ∈  𝑢 ∀ 𝑧  ∈  𝑢 ( 𝑥 𝑑 𝑦 )  ≤  ( ( 𝑧 𝑑 𝑥 )  +𝑒  ( 𝑧 𝑑 𝑦 ) )  ↔  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝑑 𝑦 )  ≤  ( ( 𝑧 𝑑 𝑥 )  +𝑒  ( 𝑧 𝑑 𝑦 ) ) ) ) | 
						
							| 7 | 6 | anbi2d | ⊢ ( 𝑢  =  𝑋  →  ( ( ( 𝑥 𝑑 𝑥 )  =  0  ∧  ∀ 𝑦  ∈  𝑢 ∀ 𝑧  ∈  𝑢 ( 𝑥 𝑑 𝑦 )  ≤  ( ( 𝑧 𝑑 𝑥 )  +𝑒  ( 𝑧 𝑑 𝑦 ) ) )  ↔  ( ( 𝑥 𝑑 𝑥 )  =  0  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝑑 𝑦 )  ≤  ( ( 𝑧 𝑑 𝑥 )  +𝑒  ( 𝑧 𝑑 𝑦 ) ) ) ) ) | 
						
							| 8 | 7 | raleqbi1dv | ⊢ ( 𝑢  =  𝑋  →  ( ∀ 𝑥  ∈  𝑢 ( ( 𝑥 𝑑 𝑥 )  =  0  ∧  ∀ 𝑦  ∈  𝑢 ∀ 𝑧  ∈  𝑢 ( 𝑥 𝑑 𝑦 )  ≤  ( ( 𝑧 𝑑 𝑥 )  +𝑒  ( 𝑧 𝑑 𝑦 ) ) )  ↔  ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝑑 𝑥 )  =  0  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝑑 𝑦 )  ≤  ( ( 𝑧 𝑑 𝑥 )  +𝑒  ( 𝑧 𝑑 𝑦 ) ) ) ) ) | 
						
							| 9 | 4 8 | rabeqbidv | ⊢ ( 𝑢  =  𝑋  →  { 𝑑  ∈  ( ℝ*  ↑m  ( 𝑢  ×  𝑢 ) )  ∣  ∀ 𝑥  ∈  𝑢 ( ( 𝑥 𝑑 𝑥 )  =  0  ∧  ∀ 𝑦  ∈  𝑢 ∀ 𝑧  ∈  𝑢 ( 𝑥 𝑑 𝑦 )  ≤  ( ( 𝑧 𝑑 𝑥 )  +𝑒  ( 𝑧 𝑑 𝑦 ) ) ) }  =  { 𝑑  ∈  ( ℝ*  ↑m  ( 𝑋  ×  𝑋 ) )  ∣  ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝑑 𝑥 )  =  0  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝑑 𝑦 )  ≤  ( ( 𝑧 𝑑 𝑥 )  +𝑒  ( 𝑧 𝑑 𝑦 ) ) ) } ) | 
						
							| 10 |  | df-psmet | ⊢ PsMet  =  ( 𝑢  ∈  V  ↦  { 𝑑  ∈  ( ℝ*  ↑m  ( 𝑢  ×  𝑢 ) )  ∣  ∀ 𝑥  ∈  𝑢 ( ( 𝑥 𝑑 𝑥 )  =  0  ∧  ∀ 𝑦  ∈  𝑢 ∀ 𝑧  ∈  𝑢 ( 𝑥 𝑑 𝑦 )  ≤  ( ( 𝑧 𝑑 𝑥 )  +𝑒  ( 𝑧 𝑑 𝑦 ) ) ) } ) | 
						
							| 11 |  | ovex | ⊢ ( ℝ*  ↑m  ( 𝑋  ×  𝑋 ) )  ∈  V | 
						
							| 12 | 11 | rabex | ⊢ { 𝑑  ∈  ( ℝ*  ↑m  ( 𝑋  ×  𝑋 ) )  ∣  ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝑑 𝑥 )  =  0  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝑑 𝑦 )  ≤  ( ( 𝑧 𝑑 𝑥 )  +𝑒  ( 𝑧 𝑑 𝑦 ) ) ) }  ∈  V | 
						
							| 13 | 9 10 12 | fvmpt | ⊢ ( 𝑋  ∈  V  →  ( PsMet ‘ 𝑋 )  =  { 𝑑  ∈  ( ℝ*  ↑m  ( 𝑋  ×  𝑋 ) )  ∣  ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝑑 𝑥 )  =  0  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝑑 𝑦 )  ≤  ( ( 𝑧 𝑑 𝑥 )  +𝑒  ( 𝑧 𝑑 𝑦 ) ) ) } ) | 
						
							| 14 | 1 13 | syl | ⊢ ( 𝑋  ∈  𝑉  →  ( PsMet ‘ 𝑋 )  =  { 𝑑  ∈  ( ℝ*  ↑m  ( 𝑋  ×  𝑋 ) )  ∣  ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝑑 𝑥 )  =  0  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝑑 𝑦 )  ≤  ( ( 𝑧 𝑑 𝑥 )  +𝑒  ( 𝑧 𝑑 𝑦 ) ) ) } ) | 
						
							| 15 | 14 | eleq2d | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ↔  𝐷  ∈  { 𝑑  ∈  ( ℝ*  ↑m  ( 𝑋  ×  𝑋 ) )  ∣  ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝑑 𝑥 )  =  0  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝑑 𝑦 )  ≤  ( ( 𝑧 𝑑 𝑥 )  +𝑒  ( 𝑧 𝑑 𝑦 ) ) ) } ) ) | 
						
							| 16 |  | oveq | ⊢ ( 𝑑  =  𝐷  →  ( 𝑥 𝑑 𝑥 )  =  ( 𝑥 𝐷 𝑥 ) ) | 
						
							| 17 | 16 | eqeq1d | ⊢ ( 𝑑  =  𝐷  →  ( ( 𝑥 𝑑 𝑥 )  =  0  ↔  ( 𝑥 𝐷 𝑥 )  =  0 ) ) | 
						
							| 18 |  | oveq | ⊢ ( 𝑑  =  𝐷  →  ( 𝑥 𝑑 𝑦 )  =  ( 𝑥 𝐷 𝑦 ) ) | 
						
							| 19 |  | oveq | ⊢ ( 𝑑  =  𝐷  →  ( 𝑧 𝑑 𝑥 )  =  ( 𝑧 𝐷 𝑥 ) ) | 
						
							| 20 |  | oveq | ⊢ ( 𝑑  =  𝐷  →  ( 𝑧 𝑑 𝑦 )  =  ( 𝑧 𝐷 𝑦 ) ) | 
						
							| 21 | 19 20 | oveq12d | ⊢ ( 𝑑  =  𝐷  →  ( ( 𝑧 𝑑 𝑥 )  +𝑒  ( 𝑧 𝑑 𝑦 ) )  =  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) | 
						
							| 22 | 18 21 | breq12d | ⊢ ( 𝑑  =  𝐷  →  ( ( 𝑥 𝑑 𝑦 )  ≤  ( ( 𝑧 𝑑 𝑥 )  +𝑒  ( 𝑧 𝑑 𝑦 ) )  ↔  ( 𝑥 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) | 
						
							| 23 | 22 | 2ralbidv | ⊢ ( 𝑑  =  𝐷  →  ( ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝑑 𝑦 )  ≤  ( ( 𝑧 𝑑 𝑥 )  +𝑒  ( 𝑧 𝑑 𝑦 ) )  ↔  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) | 
						
							| 24 | 17 23 | anbi12d | ⊢ ( 𝑑  =  𝐷  →  ( ( ( 𝑥 𝑑 𝑥 )  =  0  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝑑 𝑦 )  ≤  ( ( 𝑧 𝑑 𝑥 )  +𝑒  ( 𝑧 𝑑 𝑦 ) ) )  ↔  ( ( 𝑥 𝐷 𝑥 )  =  0  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) ) | 
						
							| 25 | 24 | ralbidv | ⊢ ( 𝑑  =  𝐷  →  ( ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝑑 𝑥 )  =  0  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝑑 𝑦 )  ≤  ( ( 𝑧 𝑑 𝑥 )  +𝑒  ( 𝑧 𝑑 𝑦 ) ) )  ↔  ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝐷 𝑥 )  =  0  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) ) | 
						
							| 26 | 25 | elrab | ⊢ ( 𝐷  ∈  { 𝑑  ∈  ( ℝ*  ↑m  ( 𝑋  ×  𝑋 ) )  ∣  ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝑑 𝑥 )  =  0  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝑑 𝑦 )  ≤  ( ( 𝑧 𝑑 𝑥 )  +𝑒  ( 𝑧 𝑑 𝑦 ) ) ) }  ↔  ( 𝐷  ∈  ( ℝ*  ↑m  ( 𝑋  ×  𝑋 ) )  ∧  ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝐷 𝑥 )  =  0  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) ) | 
						
							| 27 | 15 26 | bitrdi | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ↔  ( 𝐷  ∈  ( ℝ*  ↑m  ( 𝑋  ×  𝑋 ) )  ∧  ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝐷 𝑥 )  =  0  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) | 
						
							| 28 |  | xrex | ⊢ ℝ*  ∈  V | 
						
							| 29 |  | sqxpexg | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋  ×  𝑋 )  ∈  V ) | 
						
							| 30 |  | elmapg | ⊢ ( ( ℝ*  ∈  V  ∧  ( 𝑋  ×  𝑋 )  ∈  V )  →  ( 𝐷  ∈  ( ℝ*  ↑m  ( 𝑋  ×  𝑋 ) )  ↔  𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ* ) ) | 
						
							| 31 | 28 29 30 | sylancr | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝐷  ∈  ( ℝ*  ↑m  ( 𝑋  ×  𝑋 ) )  ↔  𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ* ) ) | 
						
							| 32 | 31 | anbi1d | ⊢ ( 𝑋  ∈  𝑉  →  ( ( 𝐷  ∈  ( ℝ*  ↑m  ( 𝑋  ×  𝑋 ) )  ∧  ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝐷 𝑥 )  =  0  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) )  ↔  ( 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ*  ∧  ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝐷 𝑥 )  =  0  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) | 
						
							| 33 | 27 32 | bitrd | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ↔  ( 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ*  ∧  ∀ 𝑥  ∈  𝑋 ( ( 𝑥 𝐷 𝑥 )  =  0  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑥 𝐷 𝑦 )  ≤  ( ( 𝑧 𝐷 𝑥 )  +𝑒  ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |