Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ V ) |
2 |
|
id |
⊢ ( 𝑢 = 𝑋 → 𝑢 = 𝑋 ) |
3 |
2
|
sqxpeqd |
⊢ ( 𝑢 = 𝑋 → ( 𝑢 × 𝑢 ) = ( 𝑋 × 𝑋 ) ) |
4 |
3
|
oveq2d |
⊢ ( 𝑢 = 𝑋 → ( ℝ* ↑m ( 𝑢 × 𝑢 ) ) = ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ) |
5 |
|
raleq |
⊢ ( 𝑢 = 𝑋 → ( ∀ 𝑧 ∈ 𝑢 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) ) |
6 |
5
|
raleqbi1dv |
⊢ ( 𝑢 = 𝑋 → ( ∀ 𝑦 ∈ 𝑢 ∀ 𝑧 ∈ 𝑢 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) ) |
7 |
6
|
anbi2d |
⊢ ( 𝑢 = 𝑋 → ( ( ( 𝑥 𝑑 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑢 ∀ 𝑧 ∈ 𝑢 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) ↔ ( ( 𝑥 𝑑 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) ) ) |
8 |
7
|
raleqbi1dv |
⊢ ( 𝑢 = 𝑋 → ( ∀ 𝑥 ∈ 𝑢 ( ( 𝑥 𝑑 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑢 ∀ 𝑧 ∈ 𝑢 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝑑 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) ) ) |
9 |
4 8
|
rabeqbidv |
⊢ ( 𝑢 = 𝑋 → { 𝑑 ∈ ( ℝ* ↑m ( 𝑢 × 𝑢 ) ) ∣ ∀ 𝑥 ∈ 𝑢 ( ( 𝑥 𝑑 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑢 ∀ 𝑧 ∈ 𝑢 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) } = { 𝑑 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ∣ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝑑 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) } ) |
10 |
|
df-psmet |
⊢ PsMet = ( 𝑢 ∈ V ↦ { 𝑑 ∈ ( ℝ* ↑m ( 𝑢 × 𝑢 ) ) ∣ ∀ 𝑥 ∈ 𝑢 ( ( 𝑥 𝑑 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑢 ∀ 𝑧 ∈ 𝑢 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) } ) |
11 |
|
ovex |
⊢ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ∈ V |
12 |
11
|
rabex |
⊢ { 𝑑 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ∣ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝑑 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) } ∈ V |
13 |
9 10 12
|
fvmpt |
⊢ ( 𝑋 ∈ V → ( PsMet ‘ 𝑋 ) = { 𝑑 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ∣ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝑑 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) } ) |
14 |
1 13
|
syl |
⊢ ( 𝑋 ∈ 𝑉 → ( PsMet ‘ 𝑋 ) = { 𝑑 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ∣ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝑑 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) } ) |
15 |
14
|
eleq2d |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ↔ 𝐷 ∈ { 𝑑 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ∣ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝑑 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) } ) ) |
16 |
|
oveq |
⊢ ( 𝑑 = 𝐷 → ( 𝑥 𝑑 𝑥 ) = ( 𝑥 𝐷 𝑥 ) ) |
17 |
16
|
eqeq1d |
⊢ ( 𝑑 = 𝐷 → ( ( 𝑥 𝑑 𝑥 ) = 0 ↔ ( 𝑥 𝐷 𝑥 ) = 0 ) ) |
18 |
|
oveq |
⊢ ( 𝑑 = 𝐷 → ( 𝑥 𝑑 𝑦 ) = ( 𝑥 𝐷 𝑦 ) ) |
19 |
|
oveq |
⊢ ( 𝑑 = 𝐷 → ( 𝑧 𝑑 𝑥 ) = ( 𝑧 𝐷 𝑥 ) ) |
20 |
|
oveq |
⊢ ( 𝑑 = 𝐷 → ( 𝑧 𝑑 𝑦 ) = ( 𝑧 𝐷 𝑦 ) ) |
21 |
19 20
|
oveq12d |
⊢ ( 𝑑 = 𝐷 → ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) = ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
22 |
18 21
|
breq12d |
⊢ ( 𝑑 = 𝐷 → ( ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ↔ ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) |
23 |
22
|
2ralbidv |
⊢ ( 𝑑 = 𝐷 → ( ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) |
24 |
17 23
|
anbi12d |
⊢ ( 𝑑 = 𝐷 → ( ( ( 𝑥 𝑑 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) ↔ ( ( 𝑥 𝐷 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
25 |
24
|
ralbidv |
⊢ ( 𝑑 = 𝐷 → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝑑 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐷 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
26 |
25
|
elrab |
⊢ ( 𝐷 ∈ { 𝑑 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ∣ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝑑 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) } ↔ ( 𝐷 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐷 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
27 |
15 26
|
bitrdi |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐷 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |
28 |
|
xrex |
⊢ ℝ* ∈ V |
29 |
|
sqxpexg |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 × 𝑋 ) ∈ V ) |
30 |
|
elmapg |
⊢ ( ( ℝ* ∈ V ∧ ( 𝑋 × 𝑋 ) ∈ V ) → ( 𝐷 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ↔ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) ) |
31 |
28 29 30
|
sylancr |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝐷 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ↔ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) ) |
32 |
31
|
anbi1d |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝐷 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐷 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐷 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |
33 |
27 32
|
bitrd |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐷 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |