Step |
Hyp |
Ref |
Expression |
1 |
|
psubclset.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
psubclset.p |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
3 |
|
psubclset.c |
⊢ 𝐶 = ( PSubCl ‘ 𝐾 ) |
4 |
1 2 3
|
psubclsetN |
⊢ ( 𝐾 ∈ 𝐷 → 𝐶 = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) } ) |
5 |
4
|
eleq2d |
⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝐶 ↔ 𝑋 ∈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) } ) ) |
6 |
1
|
fvexi |
⊢ 𝐴 ∈ V |
7 |
6
|
ssex |
⊢ ( 𝑋 ⊆ 𝐴 → 𝑋 ∈ V ) |
8 |
7
|
adantr |
⊢ ( ( 𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → 𝑋 ∈ V ) |
9 |
|
sseq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴 ) ) |
10 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑋 → ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
11 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
12 |
10 11
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) ) |
13 |
9 12
|
anbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ↔ ( 𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) ) ) |
14 |
8 13
|
elab3 |
⊢ ( 𝑋 ∈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) } ↔ ( 𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) ) |
15 |
5 14
|
bitrdi |
⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝐶 ↔ ( 𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) ) ) |