Step |
Hyp |
Ref |
Expression |
1 |
|
pthsfval |
⊢ ( Paths ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝 ∧ Fun ◡ ( 𝑝 ↾ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ∧ ( ( 𝑝 “ { 0 , ( ♯ ‘ 𝑓 ) } ) ∩ ( 𝑝 “ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ) = ∅ ) } |
2 |
|
3anass |
⊢ ( ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝 ∧ Fun ◡ ( 𝑝 ↾ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ∧ ( ( 𝑝 “ { 0 , ( ♯ ‘ 𝑓 ) } ) ∩ ( 𝑝 “ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ) = ∅ ) ↔ ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝 ∧ ( Fun ◡ ( 𝑝 ↾ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ∧ ( ( 𝑝 “ { 0 , ( ♯ ‘ 𝑓 ) } ) ∩ ( 𝑝 “ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ) = ∅ ) ) ) |
3 |
2
|
opabbii |
⊢ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝 ∧ Fun ◡ ( 𝑝 ↾ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ∧ ( ( 𝑝 “ { 0 , ( ♯ ‘ 𝑓 ) } ) ∩ ( 𝑝 “ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ) = ∅ ) } = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝 ∧ ( Fun ◡ ( 𝑝 ↾ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ∧ ( ( 𝑝 “ { 0 , ( ♯ ‘ 𝑓 ) } ) ∩ ( 𝑝 “ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ) = ∅ ) ) } |
4 |
1 3
|
eqtri |
⊢ ( Paths ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝 ∧ ( Fun ◡ ( 𝑝 ↾ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ∧ ( ( 𝑝 “ { 0 , ( ♯ ‘ 𝑓 ) } ) ∩ ( 𝑝 “ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ) = ∅ ) ) } |
5 |
|
simpr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → 𝑝 = 𝑃 ) |
6 |
|
fveq2 |
⊢ ( 𝑓 = 𝐹 → ( ♯ ‘ 𝑓 ) = ( ♯ ‘ 𝐹 ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑓 = 𝐹 → ( 1 ..^ ( ♯ ‘ 𝑓 ) ) = ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 1 ..^ ( ♯ ‘ 𝑓 ) ) = ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
9 |
5 8
|
reseq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝑝 ↾ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) = ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
10 |
9
|
cnveqd |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ◡ ( 𝑝 ↾ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) = ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
11 |
10
|
funeqd |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( Fun ◡ ( 𝑝 ↾ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
12 |
6
|
preq2d |
⊢ ( 𝑓 = 𝐹 → { 0 , ( ♯ ‘ 𝑓 ) } = { 0 , ( ♯ ‘ 𝐹 ) } ) |
13 |
12
|
adantr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → { 0 , ( ♯ ‘ 𝑓 ) } = { 0 , ( ♯ ‘ 𝐹 ) } ) |
14 |
5 13
|
imaeq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝑝 “ { 0 , ( ♯ ‘ 𝑓 ) } ) = ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ) |
15 |
5 8
|
imaeq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝑝 “ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) = ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
16 |
14 15
|
ineq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ( 𝑝 “ { 0 , ( ♯ ‘ 𝑓 ) } ) ∩ ( 𝑝 “ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ) = ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
17 |
16
|
eqeq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ( ( 𝑝 “ { 0 , ( ♯ ‘ 𝑓 ) } ) ∩ ( 𝑝 “ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ) = ∅ ↔ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |
18 |
11 17
|
anbi12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ( Fun ◡ ( 𝑝 ↾ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ∧ ( ( 𝑝 “ { 0 , ( ♯ ‘ 𝑓 ) } ) ∩ ( 𝑝 “ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ) = ∅ ) ↔ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) ) |
19 |
|
reltrls |
⊢ Rel ( Trails ‘ 𝐺 ) |
20 |
4 18 19
|
brfvopabrbr |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) ) |
21 |
|
3anass |
⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) ) |
22 |
20 21
|
bitr4i |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |