| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pthsonfval.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								1
							 | 
							pthsonfval | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 )  =  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝  ∧  𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) } )  | 
						
						
							| 3 | 
							
								2
							 | 
							breqd | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐹 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑃  ↔  𝐹 { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝  ∧  𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) } 𝑃 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							breq12 | 
							⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝  ↔  𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							breq12 | 
							⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝  ↔  𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							anbi12d | 
							⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝  ∧  𝑓 ( Paths ‘ 𝐺 ) 𝑝 )  ↔  ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝  ∧  𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) }  =  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝  ∧  𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) }  | 
						
						
							| 8 | 
							
								6 7
							 | 
							brabga | 
							⊢ ( ( 𝐹  ∈  𝑈  ∧  𝑃  ∈  𝑍 )  →  ( 𝐹 { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝  ∧  𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) } 𝑃  ↔  ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ) )  | 
						
						
							| 9 | 
							
								3 8
							 | 
							sylan9bb | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐹  ∈  𝑈  ∧  𝑃  ∈  𝑍 ) )  →  ( 𝐹 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑃  ↔  ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ) )  |