Step |
Hyp |
Ref |
Expression |
1 |
|
pthsonfval.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
pthsonfval |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ∧ 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) } ) |
3 |
2
|
breqd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐹 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ 𝐹 { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ∧ 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) } 𝑃 ) ) |
4 |
|
breq12 |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ↔ 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) ) |
5 |
|
breq12 |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ↔ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ) |
6 |
4 5
|
anbi12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ∧ 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) ↔ ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ) ) |
7 |
|
eqid |
⊢ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ∧ 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) } = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ∧ 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) } |
8 |
6 7
|
brabga |
⊢ ( ( 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍 ) → ( 𝐹 { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ∧ 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) } 𝑃 ↔ ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ) ) |
9 |
3 8
|
sylan9bb |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍 ) ) → ( 𝐹 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ) ) |