| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kqval.2 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) |
| 2 |
1
|
kqid |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ) |
| 3 |
2
|
ad2antrr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ) |
| 4 |
|
cnima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → ( ◡ 𝐹 “ 𝑣 ) ∈ 𝐽 ) |
| 5 |
3 4
|
sylan |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → ( ◡ 𝐹 “ 𝑣 ) ∈ 𝐽 ) |
| 6 |
|
eleq2 |
⊢ ( 𝑜 = ( ◡ 𝐹 “ 𝑣 ) → ( 𝑧 ∈ 𝑜 ↔ 𝑧 ∈ ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 7 |
|
eleq2 |
⊢ ( 𝑜 = ( ◡ 𝐹 “ 𝑣 ) → ( 𝑤 ∈ 𝑜 ↔ 𝑤 ∈ ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 8 |
6 7
|
imbi12d |
⊢ ( 𝑜 = ( ◡ 𝐹 “ 𝑣 ) → ( ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) ↔ ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑣 ) → 𝑤 ∈ ( ◡ 𝐹 “ 𝑣 ) ) ) ) |
| 9 |
8
|
rspcv |
⊢ ( ( ◡ 𝐹 “ 𝑣 ) ∈ 𝐽 → ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑣 ) → 𝑤 ∈ ( ◡ 𝐹 “ 𝑣 ) ) ) ) |
| 10 |
5 9
|
syl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑣 ) → 𝑤 ∈ ( ◡ 𝐹 “ 𝑣 ) ) ) ) |
| 11 |
1
|
kqffn |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 12 |
11
|
ad2antrr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝐹 Fn 𝑋 ) |
| 13 |
12
|
adantr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → 𝐹 Fn 𝑋 ) |
| 14 |
|
fnfun |
⊢ ( 𝐹 Fn 𝑋 → Fun 𝐹 ) |
| 15 |
13 14
|
syl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → Fun 𝐹 ) |
| 16 |
|
simprl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) |
| 17 |
16
|
adantr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → 𝑧 ∈ 𝑋 ) |
| 18 |
13
|
fndmd |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → dom 𝐹 = 𝑋 ) |
| 19 |
17 18
|
eleqtrrd |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → 𝑧 ∈ dom 𝐹 ) |
| 20 |
|
fvimacnv |
⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 ↔ 𝑧 ∈ ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 21 |
15 19 20
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 ↔ 𝑧 ∈ ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 22 |
|
simprr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑤 ∈ 𝑋 ) |
| 23 |
22
|
adantr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → 𝑤 ∈ 𝑋 ) |
| 24 |
23 18
|
eleqtrrd |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → 𝑤 ∈ dom 𝐹 ) |
| 25 |
|
fvimacnv |
⊢ ( ( Fun 𝐹 ∧ 𝑤 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ↔ 𝑤 ∈ ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 26 |
15 24 25
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ↔ 𝑤 ∈ ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 27 |
21 26
|
imbi12d |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) ↔ ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑣 ) → 𝑤 ∈ ( ◡ 𝐹 “ 𝑣 ) ) ) ) |
| 28 |
10 27
|
sylibrd |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) ) ) |
| 29 |
28
|
ralrimdva |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) ) ) |
| 30 |
|
simplr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( KQ ‘ 𝐽 ) ∈ Fre ) |
| 31 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ∈ ran 𝐹 ) |
| 32 |
12 16 31
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ran 𝐹 ) |
| 33 |
1
|
kqtopon |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 34 |
33
|
ad2antrr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 35 |
|
toponuni |
⊢ ( ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) → ran 𝐹 = ∪ ( KQ ‘ 𝐽 ) ) |
| 36 |
34 35
|
syl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ran 𝐹 = ∪ ( KQ ‘ 𝐽 ) ) |
| 37 |
32 36
|
eleqtrd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ∪ ( KQ ‘ 𝐽 ) ) |
| 38 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑤 ) ∈ ran 𝐹 ) |
| 39 |
12 22 38
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ran 𝐹 ) |
| 40 |
39 36
|
eleqtrd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ∪ ( KQ ‘ 𝐽 ) ) |
| 41 |
|
eqid |
⊢ ∪ ( KQ ‘ 𝐽 ) = ∪ ( KQ ‘ 𝐽 ) |
| 42 |
41
|
t1sep2 |
⊢ ( ( ( KQ ‘ 𝐽 ) ∈ Fre ∧ ( 𝐹 ‘ 𝑧 ) ∈ ∪ ( KQ ‘ 𝐽 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ ∪ ( KQ ‘ 𝐽 ) ) → ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 43 |
30 37 40 42
|
syl3anc |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 44 |
29 43
|
syld |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 45 |
1
|
kqfeq |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) ) ) |
| 46 |
|
eleq2 |
⊢ ( 𝑜 = 𝑦 → ( 𝑧 ∈ 𝑜 ↔ 𝑧 ∈ 𝑦 ) ) |
| 47 |
|
eleq2 |
⊢ ( 𝑜 = 𝑦 → ( 𝑤 ∈ 𝑜 ↔ 𝑤 ∈ 𝑦 ) ) |
| 48 |
46 47
|
bibi12d |
⊢ ( 𝑜 = 𝑦 → ( ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ↔ ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) ) ) |
| 49 |
48
|
cbvralvw |
⊢ ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) ) |
| 50 |
45 49
|
bitr4di |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) ) |
| 51 |
50
|
3expb |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) ) |
| 52 |
51
|
adantlr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) ) |
| 53 |
44 52
|
sylibd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) ) |
| 54 |
53
|
ralrimivva |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) → ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) ) |
| 55 |
54
|
ex |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( KQ ‘ 𝐽 ) ∈ Fre → ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) ) ) |
| 56 |
1
|
kqopn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝐹 “ 𝑜 ) ∈ ( KQ ‘ 𝐽 ) ) |
| 57 |
56
|
ad4ant14 |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝐹 “ 𝑜 ) ∈ ( KQ ‘ 𝐽 ) ) |
| 58 |
|
eleq2 |
⊢ ( 𝑣 = ( 𝐹 “ 𝑜 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑜 ) ) ) |
| 59 |
|
eleq2 |
⊢ ( 𝑣 = ( 𝐹 “ 𝑜 ) → ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑜 ) ) ) |
| 60 |
58 59
|
imbi12d |
⊢ ( 𝑣 = ( 𝐹 “ 𝑜 ) → ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑜 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑜 ) ) ) ) |
| 61 |
60
|
rspcv |
⊢ ( ( 𝐹 “ 𝑜 ) ∈ ( KQ ‘ 𝐽 ) → ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑜 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑜 ) ) ) ) |
| 62 |
57 61
|
syl |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑜 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑜 ) ) ) ) |
| 63 |
1
|
kqfvima |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑜 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑜 ) ) ) |
| 64 |
63
|
3expa |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑜 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑜 ) ) ) |
| 65 |
64
|
an32s |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝑧 ∈ 𝑜 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑜 ) ) ) |
| 66 |
65
|
adantlr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝑧 ∈ 𝑜 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑜 ) ) ) |
| 67 |
1
|
kqfvima |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 ∈ 𝑜 ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑜 ) ) ) |
| 68 |
67
|
3expa |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 ∈ 𝑜 ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑜 ) ) ) |
| 69 |
68
|
an32s |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝑤 ∈ 𝑜 ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑜 ) ) ) |
| 70 |
69
|
adantllr |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝑤 ∈ 𝑜 ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑜 ) ) ) |
| 71 |
66 70
|
imbi12d |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑜 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑜 ) ) ) ) |
| 72 |
62 71
|
sylibrd |
⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) ) ) |
| 73 |
72
|
ralrimdva |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) ) ) |
| 74 |
1
|
kqfval |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) = { 𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦 } ) |
| 75 |
74
|
adantr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) = { 𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦 } ) |
| 76 |
1
|
kqfval |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑤 ) = { 𝑦 ∈ 𝐽 ∣ 𝑤 ∈ 𝑦 } ) |
| 77 |
76
|
adantlr |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑤 ) = { 𝑦 ∈ 𝐽 ∣ 𝑤 ∈ 𝑦 } ) |
| 78 |
75 77
|
eqeq12d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ { 𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦 } = { 𝑦 ∈ 𝐽 ∣ 𝑤 ∈ 𝑦 } ) ) |
| 79 |
|
rabbi |
⊢ ( ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) ↔ { 𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦 } = { 𝑦 ∈ 𝐽 ∣ 𝑤 ∈ 𝑦 } ) |
| 80 |
49 79
|
bitri |
⊢ ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ↔ { 𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦 } = { 𝑦 ∈ 𝐽 ∣ 𝑤 ∈ 𝑦 } ) |
| 81 |
78 80
|
bitr4di |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) ) |
| 82 |
81
|
biimprd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 83 |
73 82
|
imim12d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) → ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 84 |
83
|
ralimdva |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → ( ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) → ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 85 |
84
|
ralimdva |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) → ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 86 |
|
eleq1 |
⊢ ( 𝑎 = ( 𝐹 ‘ 𝑧 ) → ( 𝑎 ∈ 𝑣 ↔ ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 ) ) |
| 87 |
86
|
imbi1d |
⊢ ( 𝑎 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → 𝑏 ∈ 𝑣 ) ) ) |
| 88 |
87
|
ralbidv |
⊢ ( 𝑎 = ( 𝐹 ‘ 𝑧 ) → ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣 ) ↔ ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → 𝑏 ∈ 𝑣 ) ) ) |
| 89 |
|
eqeq1 |
⊢ ( 𝑎 = ( 𝐹 ‘ 𝑧 ) → ( 𝑎 = 𝑏 ↔ ( 𝐹 ‘ 𝑧 ) = 𝑏 ) ) |
| 90 |
88 89
|
imbi12d |
⊢ ( 𝑎 = ( 𝐹 ‘ 𝑧 ) → ( ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → 𝑎 = 𝑏 ) ↔ ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = 𝑏 ) ) ) |
| 91 |
90
|
ralbidv |
⊢ ( 𝑎 = ( 𝐹 ‘ 𝑧 ) → ( ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → 𝑎 = 𝑏 ) ↔ ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = 𝑏 ) ) ) |
| 92 |
91
|
ralrn |
⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → 𝑎 = 𝑏 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = 𝑏 ) ) ) |
| 93 |
|
eleq1 |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑤 ) → ( 𝑏 ∈ 𝑣 ↔ ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) ) |
| 94 |
93
|
imbi2d |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑤 ) → ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → 𝑏 ∈ 𝑣 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) ) ) |
| 95 |
94
|
ralbidv |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑤 ) → ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → 𝑏 ∈ 𝑣 ) ↔ ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) ) ) |
| 96 |
|
eqeq2 |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑏 ↔ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 97 |
95 96
|
imbi12d |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑤 ) → ( ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = 𝑏 ) ↔ ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 98 |
97
|
ralrn |
⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = 𝑏 ) ↔ ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 99 |
98
|
ralbidv |
⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑧 ∈ 𝑋 ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = 𝑏 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 100 |
92 99
|
bitrd |
⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → 𝑎 = 𝑏 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 101 |
11 100
|
syl |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → 𝑎 = 𝑏 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 102 |
85 101
|
sylibrd |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) → ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → 𝑎 = 𝑏 ) ) ) |
| 103 |
|
ist1-2 |
⊢ ( ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) → ( ( KQ ‘ 𝐽 ) ∈ Fre ↔ ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → 𝑎 = 𝑏 ) ) ) |
| 104 |
33 103
|
syl |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( KQ ‘ 𝐽 ) ∈ Fre ↔ ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → 𝑎 = 𝑏 ) ) ) |
| 105 |
102 104
|
sylibrd |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) → ( KQ ‘ 𝐽 ) ∈ Fre ) ) |
| 106 |
55 105
|
impbid |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( KQ ‘ 𝐽 ) ∈ Fre ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) ) ) |