Step |
Hyp |
Ref |
Expression |
1 |
|
isrgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
isrgr.d |
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) |
3 |
|
eleq1 |
⊢ ( 𝑘 = 𝐾 → ( 𝑘 ∈ ℕ0* ↔ 𝐾 ∈ ℕ0* ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑘 = 𝐾 ) → ( 𝑘 ∈ ℕ0* ↔ 𝐾 ∈ ℕ0* ) ) |
5 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑘 = 𝐾 ) → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
7 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( VtxDeg ‘ 𝑔 ) = ( VtxDeg ‘ 𝐺 ) ) |
8 |
7
|
fveq1d |
⊢ ( 𝑔 = 𝐺 → ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑘 = 𝐾 ) → ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ) |
10 |
|
simpr |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑘 = 𝐾 ) → 𝑘 = 𝐾 ) |
11 |
9 10
|
eqeq12d |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑘 = 𝐾 ) → ( ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 ↔ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) ) |
12 |
6 11
|
raleqbidv |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑘 = 𝐾 ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 ↔ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) ) |
13 |
4 12
|
anbi12d |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑘 = 𝐾 ) → ( ( 𝑘 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 ) ↔ ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) ) ) |
14 |
|
df-rgr |
⊢ RegGraph = { 〈 𝑔 , 𝑘 〉 ∣ ( 𝑘 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 ) } |
15 |
13 14
|
brabga |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍 ) → ( 𝐺 RegGraph 𝐾 ↔ ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) ) ) |
16 |
2
|
fveq1i |
⊢ ( 𝐷 ‘ 𝑣 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) |
17 |
16
|
eqeq1i |
⊢ ( ( 𝐷 ‘ 𝑣 ) = 𝐾 ↔ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) |
18 |
1 17
|
raleqbii |
⊢ ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ↔ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) |
19 |
18
|
bicomi |
⊢ ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ↔ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) |
20 |
19
|
a1i |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍 ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ↔ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) ) |
21 |
20
|
anbi2d |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍 ) → ( ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) ↔ ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) ) ) |
22 |
15 21
|
bitrd |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍 ) → ( 𝐺 RegGraph 𝐾 ↔ ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) ) ) |