Step |
Hyp |
Ref |
Expression |
1 |
|
isrhm.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
2 |
|
isrhm.n |
⊢ 𝑁 = ( mulGrp ‘ 𝑆 ) |
3 |
|
dfrhm2 |
⊢ RingHom = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) ) |
4 |
3
|
elmpocl |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ) |
5 |
|
oveq12 |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( 𝑟 GrpHom 𝑠 ) = ( 𝑅 GrpHom 𝑆 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑅 ) ) |
7 |
|
fveq2 |
⊢ ( 𝑠 = 𝑆 → ( mulGrp ‘ 𝑠 ) = ( mulGrp ‘ 𝑆 ) ) |
8 |
6 7
|
oveqan12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) = ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) |
9 |
5 8
|
ineq12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) = ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) |
10 |
|
ovex |
⊢ ( 𝑅 GrpHom 𝑆 ) ∈ V |
11 |
10
|
inex1 |
⊢ ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ∈ V |
12 |
9 3 11
|
ovmpoa |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → ( 𝑅 RingHom 𝑆 ) = ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) |
13 |
12
|
eleq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ↔ 𝐹 ∈ ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) ) |
14 |
|
elin |
⊢ ( 𝐹 ∈ ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) |
15 |
1 2
|
oveq12i |
⊢ ( 𝑀 MndHom 𝑁 ) = ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) |
16 |
15
|
eqcomi |
⊢ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) = ( 𝑀 MndHom 𝑁 ) |
17 |
16
|
eleq2i |
⊢ ( 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ↔ 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) |
18 |
17
|
anbi2i |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) ) |
19 |
14 18
|
bitri |
⊢ ( 𝐹 ∈ ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) ) |
20 |
13 19
|
bitrdi |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) ) ) |
21 |
4 20
|
biadanii |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) ) ) |