Metamath Proof Explorer


Theorem isrhm2d

Description: Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015)

Ref Expression
Hypotheses isrhmd.b 𝐵 = ( Base ‘ 𝑅 )
isrhmd.o 1 = ( 1r𝑅 )
isrhmd.n 𝑁 = ( 1r𝑆 )
isrhmd.t · = ( .r𝑅 )
isrhmd.u × = ( .r𝑆 )
isrhmd.r ( 𝜑𝑅 ∈ Ring )
isrhmd.s ( 𝜑𝑆 ∈ Ring )
isrhmd.ho ( 𝜑 → ( 𝐹1 ) = 𝑁 )
isrhmd.ht ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹𝑥 ) × ( 𝐹𝑦 ) ) )
isrhm2d.f ( 𝜑𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) )
Assertion isrhm2d ( 𝜑𝐹 ∈ ( 𝑅 RingHom 𝑆 ) )

Proof

Step Hyp Ref Expression
1 isrhmd.b 𝐵 = ( Base ‘ 𝑅 )
2 isrhmd.o 1 = ( 1r𝑅 )
3 isrhmd.n 𝑁 = ( 1r𝑆 )
4 isrhmd.t · = ( .r𝑅 )
5 isrhmd.u × = ( .r𝑆 )
6 isrhmd.r ( 𝜑𝑅 ∈ Ring )
7 isrhmd.s ( 𝜑𝑆 ∈ Ring )
8 isrhmd.ho ( 𝜑 → ( 𝐹1 ) = 𝑁 )
9 isrhmd.ht ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹𝑥 ) × ( 𝐹𝑦 ) ) )
10 isrhm2d.f ( 𝜑𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) )
11 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
12 11 ringmgp ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
13 6 12 syl ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
14 eqid ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 )
15 14 ringmgp ( 𝑆 ∈ Ring → ( mulGrp ‘ 𝑆 ) ∈ Mnd )
16 7 15 syl ( 𝜑 → ( mulGrp ‘ 𝑆 ) ∈ Mnd )
17 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
18 1 17 ghmf ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) )
19 10 18 syl ( 𝜑𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) )
20 9 ralrimivva ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹𝑥 ) × ( 𝐹𝑦 ) ) )
21 11 2 ringidval 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) )
22 21 fveq2i ( 𝐹1 ) = ( 𝐹 ‘ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) )
23 14 3 ringidval 𝑁 = ( 0g ‘ ( mulGrp ‘ 𝑆 ) )
24 8 22 23 3eqtr3g ( 𝜑 → ( 𝐹 ‘ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) )
25 19 20 24 3jca ( 𝜑 → ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹𝑥 ) × ( 𝐹𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) ) )
26 11 1 mgpbas 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
27 14 17 mgpbas ( Base ‘ 𝑆 ) = ( Base ‘ ( mulGrp ‘ 𝑆 ) )
28 11 4 mgpplusg · = ( +g ‘ ( mulGrp ‘ 𝑅 ) )
29 14 5 mgpplusg × = ( +g ‘ ( mulGrp ‘ 𝑆 ) )
30 eqid ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) )
31 eqid ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) )
32 26 27 28 29 30 31 ismhm ( 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ↔ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ( mulGrp ‘ 𝑆 ) ∈ Mnd ) ∧ ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹𝑥 ) × ( 𝐹𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) ) ) )
33 13 16 25 32 syl21anbrc ( 𝜑𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) )
34 10 33 jca ( 𝜑 → ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) )
35 11 14 isrhm ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) )
36 6 7 34 35 syl21anbrc ( 𝜑𝐹 ∈ ( 𝑅 RingHom 𝑆 ) )