Step |
Hyp |
Ref |
Expression |
1 |
|
isrhmd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
isrhmd.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
3 |
|
isrhmd.n |
⊢ 𝑁 = ( 1r ‘ 𝑆 ) |
4 |
|
isrhmd.t |
⊢ · = ( .r ‘ 𝑅 ) |
5 |
|
isrhmd.u |
⊢ × = ( .r ‘ 𝑆 ) |
6 |
|
isrhmd.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
|
isrhmd.s |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
8 |
|
isrhmd.ho |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = 𝑁 ) |
9 |
|
isrhmd.ht |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) × ( 𝐹 ‘ 𝑦 ) ) ) |
10 |
|
isrhm2d.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
11 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
12 |
11
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
13 |
6 12
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
14 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
15 |
14
|
ringmgp |
⊢ ( 𝑆 ∈ Ring → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
16 |
7 15
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
18 |
1 17
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) |
19 |
10 18
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) |
20 |
9
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) × ( 𝐹 ‘ 𝑦 ) ) ) |
21 |
11 2
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
22 |
21
|
fveq2i |
⊢ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
23 |
14 3
|
ringidval |
⊢ 𝑁 = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) |
24 |
8 22 23
|
3eqtr3g |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) ) |
25 |
19 20 24
|
3jca |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) × ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) ) ) |
26 |
11 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
27 |
14 17
|
mgpbas |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
28 |
11 4
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
29 |
14 5
|
mgpplusg |
⊢ × = ( +g ‘ ( mulGrp ‘ 𝑆 ) ) |
30 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
31 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) |
32 |
26 27 28 29 30 31
|
ismhm |
⊢ ( 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ↔ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ( mulGrp ‘ 𝑆 ) ∈ Mnd ) ∧ ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) × ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) ) ) ) |
33 |
13 16 25 32
|
syl21anbrc |
⊢ ( 𝜑 → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) |
34 |
10 33
|
jca |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) |
35 |
11 14
|
isrhm |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) ) |
36 |
6 7 34 35
|
syl21anbrc |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |