Step |
Hyp |
Ref |
Expression |
1 |
|
isrhmd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
isrhmd.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
3 |
|
isrhmd.n |
⊢ 𝑁 = ( 1r ‘ 𝑆 ) |
4 |
|
isrhmd.t |
⊢ · = ( .r ‘ 𝑅 ) |
5 |
|
isrhmd.u |
⊢ × = ( .r ‘ 𝑆 ) |
6 |
|
isrhmd.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
|
isrhmd.s |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
8 |
|
isrhmd.ho |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = 𝑁 ) |
9 |
|
isrhmd.ht |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) × ( 𝐹 ‘ 𝑦 ) ) ) |
10 |
|
isrhmd.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
11 |
|
isrhmd.p |
⊢ + = ( +g ‘ 𝑅 ) |
12 |
|
isrhmd.q |
⊢ ⨣ = ( +g ‘ 𝑆 ) |
13 |
|
isrhmd.f |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
14 |
|
isrhmd.hp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
15 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
16 |
6 15
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
17 |
|
ringgrp |
⊢ ( 𝑆 ∈ Ring → 𝑆 ∈ Grp ) |
18 |
7 17
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
19 |
1 10 11 12 16 18 13 14
|
isghmd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
20 |
1 2 3 4 5 6 7 8 9 19
|
isrhm2d |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |