| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isridl.u |
⊢ 𝑈 = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) |
| 2 |
|
isridl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
isridl.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 4 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
| 5 |
4
|
opprring |
⊢ ( 𝑅 ∈ Ring → ( oppr ‘ 𝑅 ) ∈ Ring ) |
| 6 |
4 2
|
opprbas |
⊢ 𝐵 = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 7 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) |
| 8 |
1 6 7
|
dflidl2 |
⊢ ( ( oppr ‘ 𝑅 ) ∈ Ring → ( 𝐼 ∈ 𝑈 ↔ ( 𝐼 ∈ ( SubGrp ‘ ( oppr ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑦 ) ∈ 𝐼 ) ) ) |
| 9 |
5 8
|
syl |
⊢ ( 𝑅 ∈ Ring → ( 𝐼 ∈ 𝑈 ↔ ( 𝐼 ∈ ( SubGrp ‘ ( oppr ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑦 ) ∈ 𝐼 ) ) ) |
| 10 |
4
|
opprsubg |
⊢ ( SubGrp ‘ 𝑅 ) = ( SubGrp ‘ ( oppr ‘ 𝑅 ) ) |
| 11 |
10
|
eqcomi |
⊢ ( SubGrp ‘ ( oppr ‘ 𝑅 ) ) = ( SubGrp ‘ 𝑅 ) |
| 12 |
11
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( SubGrp ‘ ( oppr ‘ 𝑅 ) ) = ( SubGrp ‘ 𝑅 ) ) |
| 13 |
12
|
eleq2d |
⊢ ( 𝑅 ∈ Ring → ( 𝐼 ∈ ( SubGrp ‘ ( oppr ‘ 𝑅 ) ) ↔ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ) |
| 14 |
2 3 4 7
|
opprmul |
⊢ ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑦 ) = ( 𝑦 · 𝑥 ) |
| 15 |
14
|
eleq1i |
⊢ ( ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑦 ) ∈ 𝐼 ↔ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) |
| 16 |
15
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑦 ) ∈ 𝐼 ↔ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) |
| 17 |
16
|
ralbidva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑦 ) ∈ 𝐼 ↔ ∀ 𝑦 ∈ 𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) |
| 18 |
17
|
ralbidva |
⊢ ( 𝑅 ∈ Ring → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑦 ) ∈ 𝐼 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) |
| 19 |
13 18
|
anbi12d |
⊢ ( 𝑅 ∈ Ring → ( ( 𝐼 ∈ ( SubGrp ‘ ( oppr ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑦 ) ∈ 𝐼 ) ↔ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ) |
| 20 |
9 19
|
bitrd |
⊢ ( 𝑅 ∈ Ring → ( 𝐼 ∈ 𝑈 ↔ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ) |