| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rimrcl | ⊢ ( 𝐹  ∈  ( 𝑅  RingIso  𝑆 )  →  ( 𝑅  ∈  V  ∧  𝑆  ∈  V ) ) | 
						
							| 2 |  | rhmrcl1 | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝑅  ∈  Ring ) | 
						
							| 3 | 2 | elexd | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝑅  ∈  V ) | 
						
							| 4 |  | rhmrcl2 | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝑆  ∈  Ring ) | 
						
							| 5 | 4 | elexd | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝑆  ∈  V ) | 
						
							| 6 | 3 5 | jca | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  ( 𝑅  ∈  V  ∧  𝑆  ∈  V ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  ◡ 𝐹  ∈  ( 𝑆  RingHom  𝑅 ) )  →  ( 𝑅  ∈  V  ∧  𝑆  ∈  V ) ) | 
						
							| 8 |  | df-rim | ⊢  RingIso   =  ( 𝑟  ∈  V ,  𝑠  ∈  V  ↦  { 𝑓  ∈  ( 𝑟  RingHom  𝑠 )  ∣  ◡ 𝑓  ∈  ( 𝑠  RingHom  𝑟 ) } ) | 
						
							| 9 | 8 | a1i | ⊢ ( ( 𝑅  ∈  V  ∧  𝑆  ∈  V )  →   RingIso   =  ( 𝑟  ∈  V ,  𝑠  ∈  V  ↦  { 𝑓  ∈  ( 𝑟  RingHom  𝑠 )  ∣  ◡ 𝑓  ∈  ( 𝑠  RingHom  𝑟 ) } ) ) | 
						
							| 10 |  | oveq12 | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 )  →  ( 𝑟  RingHom  𝑠 )  =  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( 𝑅  ∈  V  ∧  𝑆  ∈  V )  ∧  ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 ) )  →  ( 𝑟  RingHom  𝑠 )  =  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 12 |  | oveq12 | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑟  =  𝑅 )  →  ( 𝑠  RingHom  𝑟 )  =  ( 𝑆  RingHom  𝑅 ) ) | 
						
							| 13 | 12 | ancoms | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 )  →  ( 𝑠  RingHom  𝑟 )  =  ( 𝑆  RingHom  𝑅 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( 𝑅  ∈  V  ∧  𝑆  ∈  V )  ∧  ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 ) )  →  ( 𝑠  RingHom  𝑟 )  =  ( 𝑆  RingHom  𝑅 ) ) | 
						
							| 15 | 14 | eleq2d | ⊢ ( ( ( 𝑅  ∈  V  ∧  𝑆  ∈  V )  ∧  ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 ) )  →  ( ◡ 𝑓  ∈  ( 𝑠  RingHom  𝑟 )  ↔  ◡ 𝑓  ∈  ( 𝑆  RingHom  𝑅 ) ) ) | 
						
							| 16 | 11 15 | rabeqbidv | ⊢ ( ( ( 𝑅  ∈  V  ∧  𝑆  ∈  V )  ∧  ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 ) )  →  { 𝑓  ∈  ( 𝑟  RingHom  𝑠 )  ∣  ◡ 𝑓  ∈  ( 𝑠  RingHom  𝑟 ) }  =  { 𝑓  ∈  ( 𝑅  RingHom  𝑆 )  ∣  ◡ 𝑓  ∈  ( 𝑆  RingHom  𝑅 ) } ) | 
						
							| 17 |  | simpl | ⊢ ( ( 𝑅  ∈  V  ∧  𝑆  ∈  V )  →  𝑅  ∈  V ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝑅  ∈  V  ∧  𝑆  ∈  V )  →  𝑆  ∈  V ) | 
						
							| 19 |  | ovex | ⊢ ( 𝑅  RingHom  𝑆 )  ∈  V | 
						
							| 20 | 19 | rabex | ⊢ { 𝑓  ∈  ( 𝑅  RingHom  𝑆 )  ∣  ◡ 𝑓  ∈  ( 𝑆  RingHom  𝑅 ) }  ∈  V | 
						
							| 21 | 20 | a1i | ⊢ ( ( 𝑅  ∈  V  ∧  𝑆  ∈  V )  →  { 𝑓  ∈  ( 𝑅  RingHom  𝑆 )  ∣  ◡ 𝑓  ∈  ( 𝑆  RingHom  𝑅 ) }  ∈  V ) | 
						
							| 22 | 9 16 17 18 21 | ovmpod | ⊢ ( ( 𝑅  ∈  V  ∧  𝑆  ∈  V )  →  ( 𝑅  RingIso  𝑆 )  =  { 𝑓  ∈  ( 𝑅  RingHom  𝑆 )  ∣  ◡ 𝑓  ∈  ( 𝑆  RingHom  𝑅 ) } ) | 
						
							| 23 | 22 | eleq2d | ⊢ ( ( 𝑅  ∈  V  ∧  𝑆  ∈  V )  →  ( 𝐹  ∈  ( 𝑅  RingIso  𝑆 )  ↔  𝐹  ∈  { 𝑓  ∈  ( 𝑅  RingHom  𝑆 )  ∣  ◡ 𝑓  ∈  ( 𝑆  RingHom  𝑅 ) } ) ) | 
						
							| 24 |  | cnveq | ⊢ ( 𝑓  =  𝐹  →  ◡ 𝑓  =  ◡ 𝐹 ) | 
						
							| 25 | 24 | eleq1d | ⊢ ( 𝑓  =  𝐹  →  ( ◡ 𝑓  ∈  ( 𝑆  RingHom  𝑅 )  ↔  ◡ 𝐹  ∈  ( 𝑆  RingHom  𝑅 ) ) ) | 
						
							| 26 | 25 | elrab | ⊢ ( 𝐹  ∈  { 𝑓  ∈  ( 𝑅  RingHom  𝑆 )  ∣  ◡ 𝑓  ∈  ( 𝑆  RingHom  𝑅 ) }  ↔  ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  ◡ 𝐹  ∈  ( 𝑆  RingHom  𝑅 ) ) ) | 
						
							| 27 | 23 26 | bitrdi | ⊢ ( ( 𝑅  ∈  V  ∧  𝑆  ∈  V )  →  ( 𝐹  ∈  ( 𝑅  RingIso  𝑆 )  ↔  ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  ◡ 𝐹  ∈  ( 𝑆  RingHom  𝑅 ) ) ) ) | 
						
							| 28 | 1 7 27 | pm5.21nii | ⊢ ( 𝐹  ∈  ( 𝑅  RingIso  𝑆 )  ↔  ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  ◡ 𝐹  ∈  ( 𝑆  RingHom  𝑅 ) ) ) |