Step |
Hyp |
Ref |
Expression |
1 |
|
rngidm.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
rngidm.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
rngidm.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
5 |
4 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
6 |
4 3
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
7 |
4 2
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
8 |
1 2
|
ringideu |
⊢ ( 𝑅 ∈ Ring → ∃! 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑦 ) = 𝑥 ) ) |
9 |
|
reurex |
⊢ ( ∃! 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑦 ) = 𝑥 ) → ∃ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑦 ) = 𝑥 ) ) |
10 |
8 9
|
syl |
⊢ ( 𝑅 ∈ Ring → ∃ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑦 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝑦 ) = 𝑥 ) ) |
11 |
5 6 7 10
|
ismgmid |
⊢ ( 𝑅 ∈ Ring → ( ( 𝐼 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝐼 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 𝐼 ) = 𝑥 ) ) ↔ 1 = 𝐼 ) ) |