Metamath Proof Explorer
		
		
		
		Description:  The ring isomorphism relation.  (Contributed by Jeff Madsen, 16-Jun-2011)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | isrisc.1 | ⊢ 𝑅  ∈  V | 
					
						|  |  | isrisc.2 | ⊢ 𝑆  ∈  V | 
				
					|  | Assertion | isrisc | ⊢  ( 𝑅  ≃𝑟  𝑆  ↔  ( ( 𝑅  ∈  RingOps  ∧  𝑆  ∈  RingOps )  ∧  ∃ 𝑓 𝑓  ∈  ( 𝑅  RingOpsIso  𝑆 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isrisc.1 | ⊢ 𝑅  ∈  V | 
						
							| 2 |  | isrisc.2 | ⊢ 𝑆  ∈  V | 
						
							| 3 |  | isriscg | ⊢ ( ( 𝑅  ∈  V  ∧  𝑆  ∈  V )  →  ( 𝑅  ≃𝑟  𝑆  ↔  ( ( 𝑅  ∈  RingOps  ∧  𝑆  ∈  RingOps )  ∧  ∃ 𝑓 𝑓  ∈  ( 𝑅  RingOpsIso  𝑆 ) ) ) ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ ( 𝑅  ≃𝑟  𝑆  ↔  ( ( 𝑅  ∈  RingOps  ∧  𝑆  ∈  RingOps )  ∧  ∃ 𝑓 𝑓  ∈  ( 𝑅  RingOpsIso  𝑆 ) ) ) |