Metamath Proof Explorer
Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011)
|
|
Ref |
Expression |
|
Hypotheses |
isrisc.1 |
⊢ 𝑅 ∈ V |
|
|
isrisc.2 |
⊢ 𝑆 ∈ V |
|
Assertion |
isrisc |
⊢ ( 𝑅 ≃𝑟 𝑆 ↔ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RngIso 𝑆 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
isrisc.1 |
⊢ 𝑅 ∈ V |
2 |
|
isrisc.2 |
⊢ 𝑆 ∈ V |
3 |
|
isriscg |
⊢ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑅 ≃𝑟 𝑆 ↔ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RngIso 𝑆 ) ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝑅 ≃𝑟 𝑆 ↔ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) ∧ ∃ 𝑓 𝑓 ∈ ( 𝑅 RngIso 𝑆 ) ) ) |