| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1 | ⊢ ( 𝑟  =  𝑅  →  ( 𝑟  ∈  RingOps  ↔  𝑅  ∈  RingOps ) ) | 
						
							| 2 | 1 | anbi1d | ⊢ ( 𝑟  =  𝑅  →  ( ( 𝑟  ∈  RingOps  ∧  𝑠  ∈  RingOps )  ↔  ( 𝑅  ∈  RingOps  ∧  𝑠  ∈  RingOps ) ) ) | 
						
							| 3 |  | oveq1 | ⊢ ( 𝑟  =  𝑅  →  ( 𝑟  RingOpsIso  𝑠 )  =  ( 𝑅  RingOpsIso  𝑠 ) ) | 
						
							| 4 | 3 | eleq2d | ⊢ ( 𝑟  =  𝑅  →  ( 𝑓  ∈  ( 𝑟  RingOpsIso  𝑠 )  ↔  𝑓  ∈  ( 𝑅  RingOpsIso  𝑠 ) ) ) | 
						
							| 5 | 4 | exbidv | ⊢ ( 𝑟  =  𝑅  →  ( ∃ 𝑓 𝑓  ∈  ( 𝑟  RingOpsIso  𝑠 )  ↔  ∃ 𝑓 𝑓  ∈  ( 𝑅  RingOpsIso  𝑠 ) ) ) | 
						
							| 6 | 2 5 | anbi12d | ⊢ ( 𝑟  =  𝑅  →  ( ( ( 𝑟  ∈  RingOps  ∧  𝑠  ∈  RingOps )  ∧  ∃ 𝑓 𝑓  ∈  ( 𝑟  RingOpsIso  𝑠 ) )  ↔  ( ( 𝑅  ∈  RingOps  ∧  𝑠  ∈  RingOps )  ∧  ∃ 𝑓 𝑓  ∈  ( 𝑅  RingOpsIso  𝑠 ) ) ) ) | 
						
							| 7 |  | eleq1 | ⊢ ( 𝑠  =  𝑆  →  ( 𝑠  ∈  RingOps  ↔  𝑆  ∈  RingOps ) ) | 
						
							| 8 | 7 | anbi2d | ⊢ ( 𝑠  =  𝑆  →  ( ( 𝑅  ∈  RingOps  ∧  𝑠  ∈  RingOps )  ↔  ( 𝑅  ∈  RingOps  ∧  𝑆  ∈  RingOps ) ) ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑠  =  𝑆  →  ( 𝑅  RingOpsIso  𝑠 )  =  ( 𝑅  RingOpsIso  𝑆 ) ) | 
						
							| 10 | 9 | eleq2d | ⊢ ( 𝑠  =  𝑆  →  ( 𝑓  ∈  ( 𝑅  RingOpsIso  𝑠 )  ↔  𝑓  ∈  ( 𝑅  RingOpsIso  𝑆 ) ) ) | 
						
							| 11 | 10 | exbidv | ⊢ ( 𝑠  =  𝑆  →  ( ∃ 𝑓 𝑓  ∈  ( 𝑅  RingOpsIso  𝑠 )  ↔  ∃ 𝑓 𝑓  ∈  ( 𝑅  RingOpsIso  𝑆 ) ) ) | 
						
							| 12 | 8 11 | anbi12d | ⊢ ( 𝑠  =  𝑆  →  ( ( ( 𝑅  ∈  RingOps  ∧  𝑠  ∈  RingOps )  ∧  ∃ 𝑓 𝑓  ∈  ( 𝑅  RingOpsIso  𝑠 ) )  ↔  ( ( 𝑅  ∈  RingOps  ∧  𝑆  ∈  RingOps )  ∧  ∃ 𝑓 𝑓  ∈  ( 𝑅  RingOpsIso  𝑆 ) ) ) ) | 
						
							| 13 |  | df-risc | ⊢  ≃𝑟   =  { 〈 𝑟 ,  𝑠 〉  ∣  ( ( 𝑟  ∈  RingOps  ∧  𝑠  ∈  RingOps )  ∧  ∃ 𝑓 𝑓  ∈  ( 𝑟  RingOpsIso  𝑠 ) ) } | 
						
							| 14 | 6 12 13 | brabg | ⊢ ( ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐵 )  →  ( 𝑅  ≃𝑟  𝑆  ↔  ( ( 𝑅  ∈  RingOps  ∧  𝑆  ∈  RingOps )  ∧  ∃ 𝑓 𝑓  ∈  ( 𝑅  RingOpsIso  𝑆 ) ) ) ) |