| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isrngd.b | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝑅 ) ) | 
						
							| 2 |  | isrngd.p | ⊢ ( 𝜑  →   +   =  ( +g ‘ 𝑅 ) ) | 
						
							| 3 |  | isrngd.t | ⊢ ( 𝜑  →   ·   =  ( .r ‘ 𝑅 ) ) | 
						
							| 4 |  | isrngd.g | ⊢ ( 𝜑  →  𝑅  ∈  Abel ) | 
						
							| 5 |  | isrngd.c | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  ·  𝑦 )  ∈  𝐵 ) | 
						
							| 6 |  | isrngd.a | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  ·  𝑦 )  ·  𝑧 )  =  ( 𝑥  ·  ( 𝑦  ·  𝑧 ) ) ) | 
						
							| 7 |  | isrngd.d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑥  ·  ( 𝑦  +  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  +  ( 𝑥  ·  𝑧 ) ) ) | 
						
							| 8 |  | isrngd.e | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  +  𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 11 | 9 10 | mgpbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 12 | 1 11 | eqtrdi | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 14 | 9 13 | mgpplusg | ⊢ ( .r ‘ 𝑅 )  =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 15 | 3 14 | eqtrdi | ⊢ ( 𝜑  →   ·   =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 16 |  | fvexd | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝑅 )  ∈  V ) | 
						
							| 17 | 12 15 5 6 16 | issgrpd | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝑅 )  ∈  Smgrp ) | 
						
							| 18 | 1 | eleq2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↔  𝑥  ∈  ( Base ‘ 𝑅 ) ) ) | 
						
							| 19 | 1 | eleq2d | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐵  ↔  𝑦  ∈  ( Base ‘ 𝑅 ) ) ) | 
						
							| 20 | 1 | eleq2d | ⊢ ( 𝜑  →  ( 𝑧  ∈  𝐵  ↔  𝑧  ∈  ( Base ‘ 𝑅 ) ) ) | 
						
							| 21 | 18 19 20 | 3anbi123d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ↔  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 )  ∧  𝑧  ∈  ( Base ‘ 𝑅 ) ) ) ) | 
						
							| 22 | 21 | biimpar | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 )  ∧  𝑧  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) ) | 
						
							| 23 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →   ·   =  ( .r ‘ 𝑅 ) ) | 
						
							| 24 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑥  =  𝑥 ) | 
						
							| 25 | 2 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑦  +  𝑧 )  =  ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) | 
						
							| 26 | 23 24 25 | oveq123d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑥  ·  ( 𝑦  +  𝑧 ) )  =  ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) ) | 
						
							| 27 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →   +   =  ( +g ‘ 𝑅 ) ) | 
						
							| 28 | 3 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑥  ·  𝑦 )  =  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) | 
						
							| 29 | 3 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑥  ·  𝑧 )  =  ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) | 
						
							| 30 | 27 28 29 | oveq123d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  ·  𝑦 )  +  ( 𝑥  ·  𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) ) | 
						
							| 31 | 7 26 30 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) ) | 
						
							| 32 | 2 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑥  +  𝑦 )  =  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) | 
						
							| 33 |  | eqidd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑧  =  𝑧 ) | 
						
							| 34 | 23 32 33 | oveq123d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  +  𝑦 )  ·  𝑧 )  =  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) ) | 
						
							| 35 | 3 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑦  ·  𝑧 )  =  ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) | 
						
							| 36 | 27 29 35 | oveq123d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) | 
						
							| 37 | 8 34 36 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) | 
						
							| 38 | 31 37 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ) | 
						
							| 39 | 22 38 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 )  ∧  𝑧  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ) | 
						
							| 40 | 39 | ralrimivvva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ∀ 𝑧  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ) | 
						
							| 41 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 42 | 10 9 41 13 | isrng | ⊢ ( 𝑅  ∈  Rng  ↔  ( 𝑅  ∈  Abel  ∧  ( mulGrp ‘ 𝑅 )  ∈  Smgrp  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ∀ 𝑧  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ) ) | 
						
							| 43 | 4 17 40 42 | syl3anbrc | ⊢ ( 𝜑  →  𝑅  ∈  Rng ) |