| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isrnghm.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | isrnghm.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | isrnghm.m | ⊢  ∗   =  ( .r ‘ 𝑆 ) | 
						
							| 4 |  | rnghmrcl | ⊢ ( 𝐹  ∈  ( 𝑅  RngHom  𝑆 )  →  ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng ) ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 6 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 7 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 8 | 1 2 3 5 6 7 | rnghmval | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →  ( 𝑅  RngHom  𝑆 )  =  { 𝑓  ∈  ( ( Base ‘ 𝑆 )  ↑m  𝐵 )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ∗  ( 𝑓 ‘ 𝑦 ) ) ) } ) | 
						
							| 9 | 8 | eleq2d | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →  ( 𝐹  ∈  ( 𝑅  RngHom  𝑆 )  ↔  𝐹  ∈  { 𝑓  ∈  ( ( Base ‘ 𝑆 )  ↑m  𝐵 )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ∗  ( 𝑓 ‘ 𝑦 ) ) ) } ) ) | 
						
							| 10 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) | 
						
							| 11 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 12 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 13 | 11 12 | oveq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝑓 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 14 | 10 13 | eqeq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝑓 ‘ 𝑦 ) )  ↔  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 15 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) ) ) | 
						
							| 16 | 11 12 | oveq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ 𝑥 )  ∗  ( 𝑓 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∗  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 17 | 15 16 | eqeq12d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ∗  ( 𝑓 ‘ 𝑦 ) )  ↔  ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∗  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 18 | 14 17 | anbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ∗  ( 𝑓 ‘ 𝑦 ) ) )  ↔  ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∗  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 19 | 18 | 2ralbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ∗  ( 𝑓 ‘ 𝑦 ) ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∗  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 20 | 19 | elrab | ⊢ ( 𝐹  ∈  { 𝑓  ∈  ( ( Base ‘ 𝑆 )  ↑m  𝐵 )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ∗  ( 𝑓 ‘ 𝑦 ) ) ) }  ↔  ( 𝐹  ∈  ( ( Base ‘ 𝑆 )  ↑m  𝐵 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∗  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 21 |  | r19.26-2 | ⊢ ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∗  ( 𝐹 ‘ 𝑦 ) ) )  ↔  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∗  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 22 | 21 | anbi2i | ⊢ ( ( 𝐹  ∈  ( ( Base ‘ 𝑆 )  ↑m  𝐵 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∗  ( 𝐹 ‘ 𝑦 ) ) ) )  ↔  ( 𝐹  ∈  ( ( Base ‘ 𝑆 )  ↑m  𝐵 )  ∧  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∗  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 23 |  | anass | ⊢ ( ( ( 𝐹  ∈  ( ( Base ‘ 𝑆 )  ↑m  𝐵 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∗  ( 𝐹 ‘ 𝑦 ) ) )  ↔  ( 𝐹  ∈  ( ( Base ‘ 𝑆 )  ↑m  𝐵 )  ∧  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∗  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 24 | 22 23 | bitr4i | ⊢ ( ( 𝐹  ∈  ( ( Base ‘ 𝑆 )  ↑m  𝐵 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∗  ( 𝐹 ‘ 𝑦 ) ) ) )  ↔  ( ( 𝐹  ∈  ( ( Base ‘ 𝑆 )  ↑m  𝐵 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∗  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 25 | 1 5 6 7 | isghm | ⊢ ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ↔  ( ( 𝑅  ∈  Grp  ∧  𝑆  ∈  Grp )  ∧  ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 26 |  | fvex | ⊢ ( Base ‘ 𝑆 )  ∈  V | 
						
							| 27 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 28 | 26 27 | pm3.2i | ⊢ ( ( Base ‘ 𝑆 )  ∈  V  ∧  𝐵  ∈  V ) | 
						
							| 29 |  | elmapg | ⊢ ( ( ( Base ‘ 𝑆 )  ∈  V  ∧  𝐵  ∈  V )  →  ( 𝐹  ∈  ( ( Base ‘ 𝑆 )  ↑m  𝐵 )  ↔  𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) ) | 
						
							| 30 | 28 29 | mp1i | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →  ( 𝐹  ∈  ( ( Base ‘ 𝑆 )  ↑m  𝐵 )  ↔  𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) ) | 
						
							| 31 | 30 | anbi1d | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →  ( ( 𝐹  ∈  ( ( Base ‘ 𝑆 )  ↑m  𝐵 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) )  ↔  ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 32 |  | rngabl | ⊢ ( 𝑅  ∈  Rng  →  𝑅  ∈  Abel ) | 
						
							| 33 |  | ablgrp | ⊢ ( 𝑅  ∈  Abel  →  𝑅  ∈  Grp ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝑅  ∈  Rng  →  𝑅  ∈  Grp ) | 
						
							| 35 |  | rngabl | ⊢ ( 𝑆  ∈  Rng  →  𝑆  ∈  Abel ) | 
						
							| 36 |  | ablgrp | ⊢ ( 𝑆  ∈  Abel  →  𝑆  ∈  Grp ) | 
						
							| 37 | 35 36 | syl | ⊢ ( 𝑆  ∈  Rng  →  𝑆  ∈  Grp ) | 
						
							| 38 |  | ibar | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝑆  ∈  Grp )  →  ( ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) )  ↔  ( ( 𝑅  ∈  Grp  ∧  𝑆  ∈  Grp )  ∧  ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 39 | 34 37 38 | syl2an | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →  ( ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) )  ↔  ( ( 𝑅  ∈  Grp  ∧  𝑆  ∈  Grp )  ∧  ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 40 | 31 39 | bitr2d | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →  ( ( ( 𝑅  ∈  Grp  ∧  𝑆  ∈  Grp )  ∧  ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) )  ↔  ( 𝐹  ∈  ( ( Base ‘ 𝑆 )  ↑m  𝐵 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 41 | 25 40 | bitr2id | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →  ( ( 𝐹  ∈  ( ( Base ‘ 𝑆 )  ↑m  𝐵 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) )  ↔  𝐹  ∈  ( 𝑅  GrpHom  𝑆 ) ) ) | 
						
							| 42 | 41 | anbi1d | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →  ( ( ( 𝐹  ∈  ( ( Base ‘ 𝑆 )  ↑m  𝐵 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∗  ( 𝐹 ‘ 𝑦 ) ) )  ↔  ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∗  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 43 | 24 42 | bitrid | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →  ( ( 𝐹  ∈  ( ( Base ‘ 𝑆 )  ↑m  𝐵 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∗  ( 𝐹 ‘ 𝑦 ) ) ) )  ↔  ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∗  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 44 | 20 43 | bitrid | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →  ( 𝐹  ∈  { 𝑓  ∈  ( ( Base ‘ 𝑆 )  ↑m  𝐵 )  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝑓 ‘ 𝑦 ) )  ∧  ( 𝑓 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑓 ‘ 𝑥 )  ∗  ( 𝑓 ‘ 𝑦 ) ) ) }  ↔  ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∗  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 45 | 9 44 | bitrd | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →  ( 𝐹  ∈  ( 𝑅  RngHom  𝑆 )  ↔  ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∗  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 46 | 4 45 | biadanii | ⊢ ( 𝐹  ∈  ( 𝑅  RngHom  𝑆 )  ↔  ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  ∧  ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ∗  ( 𝐹 ‘ 𝑦 ) ) ) ) ) |