| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isrnghmmul.m | ⊢ 𝑀  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 2 |  | isrnghmmul.n | ⊢ 𝑁  =  ( mulGrp ‘ 𝑆 ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 5 |  | eqid | ⊢ ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 ) | 
						
							| 6 | 3 4 5 | isrnghm | ⊢ ( 𝐹  ∈  ( 𝑅  RngHom  𝑆 )  ↔  ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  ∧  ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 7 | 1 | rngmgp | ⊢ ( 𝑅  ∈  Rng  →  𝑀  ∈  Smgrp ) | 
						
							| 8 |  | sgrpmgm | ⊢ ( 𝑀  ∈  Smgrp  →  𝑀  ∈  Mgm ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝑅  ∈  Rng  →  𝑀  ∈  Mgm ) | 
						
							| 10 | 2 | rngmgp | ⊢ ( 𝑆  ∈  Rng  →  𝑁  ∈  Smgrp ) | 
						
							| 11 |  | sgrpmgm | ⊢ ( 𝑁  ∈  Smgrp  →  𝑁  ∈  Mgm ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝑆  ∈  Rng  →  𝑁  ∈  Mgm ) | 
						
							| 13 | 9 12 | anim12i | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →  ( 𝑀  ∈  Mgm  ∧  𝑁  ∈  Mgm ) ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 15 | 3 14 | ghmf | ⊢ ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  →  𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 16 | 13 15 | anim12i | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  ∧  𝐹  ∈  ( 𝑅  GrpHom  𝑆 ) )  →  ( ( 𝑀  ∈  Mgm  ∧  𝑁  ∈  Mgm )  ∧  𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) ) | 
						
							| 17 | 16 | biantrurd | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  ∧  𝐹  ∈  ( 𝑅  GrpHom  𝑆 ) )  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) )  ↔  ( ( ( 𝑀  ∈  Mgm  ∧  𝑁  ∈  Mgm )  ∧  𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 18 |  | anass | ⊢ ( ( ( ( 𝑀  ∈  Mgm  ∧  𝑁  ∈  Mgm )  ∧  𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) )  ↔  ( ( 𝑀  ∈  Mgm  ∧  𝑁  ∈  Mgm )  ∧  ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 19 | 17 18 | bitrdi | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  ∧  𝐹  ∈  ( 𝑅  GrpHom  𝑆 ) )  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) )  ↔  ( ( 𝑀  ∈  Mgm  ∧  𝑁  ∈  Mgm )  ∧  ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 20 | 1 3 | mgpbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑀 ) | 
						
							| 21 | 2 14 | mgpbas | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑁 ) | 
						
							| 22 | 1 4 | mgpplusg | ⊢ ( .r ‘ 𝑅 )  =  ( +g ‘ 𝑀 ) | 
						
							| 23 | 2 5 | mgpplusg | ⊢ ( .r ‘ 𝑆 )  =  ( +g ‘ 𝑁 ) | 
						
							| 24 | 20 21 22 23 | ismgmhm | ⊢ ( 𝐹  ∈  ( 𝑀  MgmHom  𝑁 )  ↔  ( ( 𝑀  ∈  Mgm  ∧  𝑁  ∈  Mgm )  ∧  ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 25 | 19 24 | bitr4di | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  ∧  𝐹  ∈  ( 𝑅  GrpHom  𝑆 ) )  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) )  ↔  𝐹  ∈  ( 𝑀  MgmHom  𝑁 ) ) ) | 
						
							| 26 | 25 | pm5.32da | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  →  ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) )  ↔  ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹  ∈  ( 𝑀  MgmHom  𝑁 ) ) ) ) | 
						
							| 27 | 26 | pm5.32i | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  ∧  ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) )  ↔  ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  ∧  ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹  ∈  ( 𝑀  MgmHom  𝑁 ) ) ) ) | 
						
							| 28 | 6 27 | bitri | ⊢ ( 𝐹  ∈  ( 𝑅  RngHom  𝑆 )  ↔  ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  Rng )  ∧  ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹  ∈  ( 𝑀  MgmHom  𝑁 ) ) ) ) |