| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-rngim | ⊢  RngIso   =  ( 𝑟  ∈  V ,  𝑠  ∈  V  ↦  { 𝑓  ∈  ( 𝑟  RngHom  𝑠 )  ∣  ◡ 𝑓  ∈  ( 𝑠  RngHom  𝑟 ) } ) | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝑆  ∈  𝑊 )  →   RngIso   =  ( 𝑟  ∈  V ,  𝑠  ∈  V  ↦  { 𝑓  ∈  ( 𝑟  RngHom  𝑠 )  ∣  ◡ 𝑓  ∈  ( 𝑠  RngHom  𝑟 ) } ) ) | 
						
							| 3 |  | oveq12 | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 )  →  ( 𝑟  RngHom  𝑠 )  =  ( 𝑅  RngHom  𝑆 ) ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑆  ∈  𝑊 )  ∧  ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 ) )  →  ( 𝑟  RngHom  𝑠 )  =  ( 𝑅  RngHom  𝑆 ) ) | 
						
							| 5 |  | oveq12 | ⊢ ( ( 𝑠  =  𝑆  ∧  𝑟  =  𝑅 )  →  ( 𝑠  RngHom  𝑟 )  =  ( 𝑆  RngHom  𝑅 ) ) | 
						
							| 6 | 5 | ancoms | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 )  →  ( 𝑠  RngHom  𝑟 )  =  ( 𝑆  RngHom  𝑅 ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑆  ∈  𝑊 )  ∧  ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 ) )  →  ( 𝑠  RngHom  𝑟 )  =  ( 𝑆  RngHom  𝑅 ) ) | 
						
							| 8 | 7 | eleq2d | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑆  ∈  𝑊 )  ∧  ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 ) )  →  ( ◡ 𝑓  ∈  ( 𝑠  RngHom  𝑟 )  ↔  ◡ 𝑓  ∈  ( 𝑆  RngHom  𝑅 ) ) ) | 
						
							| 9 | 4 8 | rabeqbidv | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑆  ∈  𝑊 )  ∧  ( 𝑟  =  𝑅  ∧  𝑠  =  𝑆 ) )  →  { 𝑓  ∈  ( 𝑟  RngHom  𝑠 )  ∣  ◡ 𝑓  ∈  ( 𝑠  RngHom  𝑟 ) }  =  { 𝑓  ∈  ( 𝑅  RngHom  𝑆 )  ∣  ◡ 𝑓  ∈  ( 𝑆  RngHom  𝑅 ) } ) | 
						
							| 10 |  | elex | ⊢ ( 𝑅  ∈  𝑉  →  𝑅  ∈  V ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝑆  ∈  𝑊 )  →  𝑅  ∈  V ) | 
						
							| 12 |  | elex | ⊢ ( 𝑆  ∈  𝑊  →  𝑆  ∈  V ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝑆  ∈  𝑊 )  →  𝑆  ∈  V ) | 
						
							| 14 |  | ovex | ⊢ ( 𝑅  RngHom  𝑆 )  ∈  V | 
						
							| 15 | 14 | rabex | ⊢ { 𝑓  ∈  ( 𝑅  RngHom  𝑆 )  ∣  ◡ 𝑓  ∈  ( 𝑆  RngHom  𝑅 ) }  ∈  V | 
						
							| 16 | 15 | a1i | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝑆  ∈  𝑊 )  →  { 𝑓  ∈  ( 𝑅  RngHom  𝑆 )  ∣  ◡ 𝑓  ∈  ( 𝑆  RngHom  𝑅 ) }  ∈  V ) | 
						
							| 17 | 2 9 11 13 16 | ovmpod | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝑆  ∈  𝑊 )  →  ( 𝑅  RngIso  𝑆 )  =  { 𝑓  ∈  ( 𝑅  RngHom  𝑆 )  ∣  ◡ 𝑓  ∈  ( 𝑆  RngHom  𝑅 ) } ) | 
						
							| 18 | 17 | eleq2d | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝑆  ∈  𝑊 )  →  ( 𝐹  ∈  ( 𝑅  RngIso  𝑆 )  ↔  𝐹  ∈  { 𝑓  ∈  ( 𝑅  RngHom  𝑆 )  ∣  ◡ 𝑓  ∈  ( 𝑆  RngHom  𝑅 ) } ) ) | 
						
							| 19 |  | cnveq | ⊢ ( 𝑓  =  𝐹  →  ◡ 𝑓  =  ◡ 𝐹 ) | 
						
							| 20 | 19 | eleq1d | ⊢ ( 𝑓  =  𝐹  →  ( ◡ 𝑓  ∈  ( 𝑆  RngHom  𝑅 )  ↔  ◡ 𝐹  ∈  ( 𝑆  RngHom  𝑅 ) ) ) | 
						
							| 21 | 20 | elrab | ⊢ ( 𝐹  ∈  { 𝑓  ∈  ( 𝑅  RngHom  𝑆 )  ∣  ◡ 𝑓  ∈  ( 𝑆  RngHom  𝑅 ) }  ↔  ( 𝐹  ∈  ( 𝑅  RngHom  𝑆 )  ∧  ◡ 𝐹  ∈  ( 𝑆  RngHom  𝑅 ) ) ) | 
						
							| 22 | 18 21 | bitrdi | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝑆  ∈  𝑊 )  →  ( 𝐹  ∈  ( 𝑅  RngIso  𝑆 )  ↔  ( 𝐹  ∈  ( 𝑅  RngHom  𝑆 )  ∧  ◡ 𝐹  ∈  ( 𝑆  RngHom  𝑅 ) ) ) ) |