Step |
Hyp |
Ref |
Expression |
1 |
|
isring.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
df-br |
⊢ ( 𝐺 RingOps 𝐻 ↔ 〈 𝐺 , 𝐻 〉 ∈ RingOps ) |
3 |
|
relrngo |
⊢ Rel RingOps |
4 |
3
|
brrelex1i |
⊢ ( 𝐺 RingOps 𝐻 → 𝐺 ∈ V ) |
5 |
2 4
|
sylbir |
⊢ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps → 𝐺 ∈ V ) |
6 |
5
|
a1i |
⊢ ( 𝐻 ∈ 𝐴 → ( 〈 𝐺 , 𝐻 〉 ∈ RingOps → 𝐺 ∈ V ) ) |
7 |
|
elex |
⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ V ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) → 𝐺 ∈ V ) |
9 |
8
|
a1i |
⊢ ( 𝐻 ∈ 𝐴 → ( ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) → 𝐺 ∈ V ) ) |
10 |
|
df-rngo |
⊢ RingOps = { 〈 𝑔 , ℎ 〉 ∣ ( ( 𝑔 ∈ AbelOp ∧ ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 ) ∧ ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ) ) } |
11 |
10
|
eleq2i |
⊢ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ↔ 〈 𝐺 , 𝐻 〉 ∈ { 〈 𝑔 , ℎ 〉 ∣ ( ( 𝑔 ∈ AbelOp ∧ ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 ) ∧ ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ) ) } ) |
12 |
|
simpl |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → 𝑔 = 𝐺 ) |
13 |
12
|
eleq1d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( 𝑔 ∈ AbelOp ↔ 𝐺 ∈ AbelOp ) ) |
14 |
|
simpr |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ℎ = 𝐻 ) |
15 |
12
|
rneqd |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ran 𝑔 = ran 𝐺 ) |
16 |
15 1
|
eqtr4di |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ran 𝑔 = 𝑋 ) |
17 |
16
|
sqxpeqd |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ran 𝑔 × ran 𝑔 ) = ( 𝑋 × 𝑋 ) ) |
18 |
14 17 16
|
feq123d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 ↔ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ) |
19 |
13 18
|
anbi12d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( 𝑔 ∈ AbelOp ∧ ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 ) ↔ ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ) ) |
20 |
14
|
oveqd |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( 𝑥 ℎ 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
21 |
|
eqidd |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → 𝑧 = 𝑧 ) |
22 |
14 20 21
|
oveq123d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) ) |
23 |
|
eqidd |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → 𝑥 = 𝑥 ) |
24 |
14
|
oveqd |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( 𝑦 ℎ 𝑧 ) = ( 𝑦 𝐻 𝑧 ) ) |
25 |
14 23 24
|
oveq123d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ) |
26 |
22 25
|
eqeq12d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ↔ ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ) ) |
27 |
12
|
oveqd |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( 𝑦 𝑔 𝑧 ) = ( 𝑦 𝐺 𝑧 ) ) |
28 |
14 23 27
|
oveq123d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) ) |
29 |
14
|
oveqd |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( 𝑥 ℎ 𝑧 ) = ( 𝑥 𝐻 𝑧 ) ) |
30 |
12 20 29
|
oveq123d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ) |
31 |
28 30
|
eqeq12d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ↔ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ) ) |
32 |
12
|
oveqd |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( 𝑥 𝑔 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
33 |
14 32 21
|
oveq123d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) ) |
34 |
12 29 24
|
oveq123d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) |
35 |
33 34
|
eqeq12d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) |
36 |
26 31 35
|
3anbi123d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ↔ ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) ) |
37 |
16 36
|
raleqbidv |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ↔ ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) ) |
38 |
16 37
|
raleqbidv |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) ) |
39 |
16 38
|
raleqbidv |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) ) |
40 |
20
|
eqeq1d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) = 𝑦 ) ) |
41 |
14
|
oveqd |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( 𝑦 ℎ 𝑥 ) = ( 𝑦 𝐻 𝑥 ) ) |
42 |
41
|
eqeq1d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( 𝑦 ℎ 𝑥 ) = 𝑦 ↔ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) |
43 |
40 42
|
anbi12d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ↔ ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) |
44 |
16 43
|
raleqbidv |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) |
45 |
16 44
|
rexeqbidv |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ↔ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) |
46 |
39 45
|
anbi12d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) |
47 |
19 46
|
anbi12d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( ( 𝑔 ∈ AbelOp ∧ ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 ) ∧ ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ) ) ↔ ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) ) |
48 |
47
|
opelopabga |
⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ 𝐴 ) → ( 〈 𝐺 , 𝐻 〉 ∈ { 〈 𝑔 , ℎ 〉 ∣ ( ( 𝑔 ∈ AbelOp ∧ ℎ : ( ran 𝑔 × ran 𝑔 ) ⟶ ran 𝑔 ) ∧ ( ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ∀ 𝑧 ∈ ran 𝑔 ( ( ( 𝑥 ℎ 𝑦 ) ℎ 𝑧 ) = ( 𝑥 ℎ ( 𝑦 ℎ 𝑧 ) ) ∧ ( 𝑥 ℎ ( 𝑦 𝑔 𝑧 ) ) = ( ( 𝑥 ℎ 𝑦 ) 𝑔 ( 𝑥 ℎ 𝑧 ) ) ∧ ( ( 𝑥 𝑔 𝑦 ) ℎ 𝑧 ) = ( ( 𝑥 ℎ 𝑧 ) 𝑔 ( 𝑦 ℎ 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( 𝑥 ℎ 𝑦 ) = 𝑦 ∧ ( 𝑦 ℎ 𝑥 ) = 𝑦 ) ) ) } ↔ ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) ) |
49 |
11 48
|
syl5bb |
⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ 𝐴 ) → ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ↔ ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) ) |
50 |
49
|
expcom |
⊢ ( 𝐻 ∈ 𝐴 → ( 𝐺 ∈ V → ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ↔ ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) ) ) |
51 |
6 9 50
|
pm5.21ndd |
⊢ ( 𝐻 ∈ 𝐴 → ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ↔ ( ( 𝐺 ∈ AbelOp ∧ 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ∧ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ∧ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐻 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑦 ) ) ) ) ) |