| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isringod.1 | ⊢ ( 𝜑  →  𝐺  ∈  AbelOp ) | 
						
							| 2 |  | isringod.2 | ⊢ ( 𝜑  →  𝑋  =  ran  𝐺 ) | 
						
							| 3 |  | isringod.3 | ⊢ ( 𝜑  →  𝐻 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋 ) | 
						
							| 4 |  | isringod.4 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 )  =  ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ) | 
						
							| 5 |  | isringod.5 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ) | 
						
							| 6 |  | isringod.6 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 )  =  ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) | 
						
							| 7 |  | isringod.7 | ⊢ ( 𝜑  →  𝑈  ∈  𝑋 ) | 
						
							| 8 |  | isringod.8 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( 𝑈 𝐻 𝑦 )  =  𝑦 ) | 
						
							| 9 |  | isringod.9 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( 𝑦 𝐻 𝑈 )  =  𝑦 ) | 
						
							| 10 | 2 | sqxpeqd | ⊢ ( 𝜑  →  ( 𝑋  ×  𝑋 )  =  ( ran  𝐺  ×  ran  𝐺 ) ) | 
						
							| 11 | 10 2 | feq23d | ⊢ ( 𝜑  →  ( 𝐻 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ↔  𝐻 : ( ran  𝐺  ×  ran  𝐺 ) ⟶ ran  𝐺 ) ) | 
						
							| 12 | 3 11 | mpbid | ⊢ ( 𝜑  →  𝐻 : ( ran  𝐺  ×  ran  𝐺 ) ⟶ ran  𝐺 ) | 
						
							| 13 | 4 5 6 | 3jca | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 )  =  ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) )  ∧  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  ∧  ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 )  =  ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) | 
						
							| 14 | 13 | ralrimivvva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 )  =  ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) )  ∧  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  ∧  ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 )  =  ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) | 
						
							| 15 | 2 | raleqdv | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 )  =  ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) )  ∧  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  ∧  ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 )  =  ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) )  ↔  ∀ 𝑧  ∈  ran  𝐺 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 )  =  ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) )  ∧  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  ∧  ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 )  =  ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) ) | 
						
							| 16 | 2 15 | raleqbidv | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 )  =  ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) )  ∧  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  ∧  ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 )  =  ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) )  ↔  ∀ 𝑦  ∈  ran  𝐺 ∀ 𝑧  ∈  ran  𝐺 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 )  =  ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) )  ∧  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  ∧  ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 )  =  ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) ) | 
						
							| 17 | 2 16 | raleqbidv | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 )  =  ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) )  ∧  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  ∧  ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 )  =  ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) )  ↔  ∀ 𝑥  ∈  ran  𝐺 ∀ 𝑦  ∈  ran  𝐺 ∀ 𝑧  ∈  ran  𝐺 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 )  =  ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) )  ∧  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  ∧  ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 )  =  ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) ) | 
						
							| 18 | 14 17 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ran  𝐺 ∀ 𝑦  ∈  ran  𝐺 ∀ 𝑧  ∈  ran  𝐺 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 )  =  ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) )  ∧  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  ∧  ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 )  =  ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) | 
						
							| 19 | 8 9 | jca | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑈 𝐻 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐻 𝑈 )  =  𝑦 ) ) | 
						
							| 20 | 19 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝑋 ( ( 𝑈 𝐻 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐻 𝑈 )  =  𝑦 ) ) | 
						
							| 21 |  | oveq1 | ⊢ ( 𝑥  =  𝑈  →  ( 𝑥 𝐻 𝑦 )  =  ( 𝑈 𝐻 𝑦 ) ) | 
						
							| 22 | 21 | eqeq1d | ⊢ ( 𝑥  =  𝑈  →  ( ( 𝑥 𝐻 𝑦 )  =  𝑦  ↔  ( 𝑈 𝐻 𝑦 )  =  𝑦 ) ) | 
						
							| 23 | 22 | ovanraleqv | ⊢ ( 𝑥  =  𝑈  →  ( ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐻 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐻 𝑥 )  =  𝑦 )  ↔  ∀ 𝑦  ∈  𝑋 ( ( 𝑈 𝐻 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐻 𝑈 )  =  𝑦 ) ) ) | 
						
							| 24 | 23 | rspcev | ⊢ ( ( 𝑈  ∈  𝑋  ∧  ∀ 𝑦  ∈  𝑋 ( ( 𝑈 𝐻 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐻 𝑈 )  =  𝑦 ) )  →  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐻 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐻 𝑥 )  =  𝑦 ) ) | 
						
							| 25 | 7 20 24 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐻 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐻 𝑥 )  =  𝑦 ) ) | 
						
							| 26 | 2 | raleqdv | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐻 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐻 𝑥 )  =  𝑦 )  ↔  ∀ 𝑦  ∈  ran  𝐺 ( ( 𝑥 𝐻 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐻 𝑥 )  =  𝑦 ) ) ) | 
						
							| 27 | 2 26 | rexeqbidv | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( ( 𝑥 𝐻 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐻 𝑥 )  =  𝑦 )  ↔  ∃ 𝑥  ∈  ran  𝐺 ∀ 𝑦  ∈  ran  𝐺 ( ( 𝑥 𝐻 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐻 𝑥 )  =  𝑦 ) ) ) | 
						
							| 28 | 25 27 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ran  𝐺 ∀ 𝑦  ∈  ran  𝐺 ( ( 𝑥 𝐻 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐻 𝑥 )  =  𝑦 ) ) | 
						
							| 29 | 18 28 | jca | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ran  𝐺 ∀ 𝑦  ∈  ran  𝐺 ∀ 𝑧  ∈  ran  𝐺 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 )  =  ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) )  ∧  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  ∧  ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 )  =  ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) )  ∧  ∃ 𝑥  ∈  ran  𝐺 ∀ 𝑦  ∈  ran  𝐺 ( ( 𝑥 𝐻 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐻 𝑥 )  =  𝑦 ) ) ) | 
						
							| 30 | 1 12 29 | jca31 | ⊢ ( 𝜑  →  ( ( 𝐺  ∈  AbelOp  ∧  𝐻 : ( ran  𝐺  ×  ran  𝐺 ) ⟶ ran  𝐺 )  ∧  ( ∀ 𝑥  ∈  ran  𝐺 ∀ 𝑦  ∈  ran  𝐺 ∀ 𝑧  ∈  ran  𝐺 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 )  =  ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) )  ∧  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  ∧  ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 )  =  ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) )  ∧  ∃ 𝑥  ∈  ran  𝐺 ∀ 𝑦  ∈  ran  𝐺 ( ( 𝑥 𝐻 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐻 𝑥 )  =  𝑦 ) ) ) ) | 
						
							| 31 |  | rnexg | ⊢ ( 𝐺  ∈  AbelOp  →  ran  𝐺  ∈  V ) | 
						
							| 32 | 1 31 | syl | ⊢ ( 𝜑  →  ran  𝐺  ∈  V ) | 
						
							| 33 | 32 32 | xpexd | ⊢ ( 𝜑  →  ( ran  𝐺  ×  ran  𝐺 )  ∈  V ) | 
						
							| 34 | 12 33 | fexd | ⊢ ( 𝜑  →  𝐻  ∈  V ) | 
						
							| 35 |  | eqid | ⊢ ran  𝐺  =  ran  𝐺 | 
						
							| 36 | 35 | isrngo | ⊢ ( 𝐻  ∈  V  →  ( 〈 𝐺 ,  𝐻 〉  ∈  RingOps  ↔  ( ( 𝐺  ∈  AbelOp  ∧  𝐻 : ( ran  𝐺  ×  ran  𝐺 ) ⟶ ran  𝐺 )  ∧  ( ∀ 𝑥  ∈  ran  𝐺 ∀ 𝑦  ∈  ran  𝐺 ∀ 𝑧  ∈  ran  𝐺 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 )  =  ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) )  ∧  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  ∧  ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 )  =  ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) )  ∧  ∃ 𝑥  ∈  ran  𝐺 ∀ 𝑦  ∈  ran  𝐺 ( ( 𝑥 𝐻 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐻 𝑥 )  =  𝑦 ) ) ) ) ) | 
						
							| 37 | 34 36 | syl | ⊢ ( 𝜑  →  ( 〈 𝐺 ,  𝐻 〉  ∈  RingOps  ↔  ( ( 𝐺  ∈  AbelOp  ∧  𝐻 : ( ran  𝐺  ×  ran  𝐺 ) ⟶ ran  𝐺 )  ∧  ( ∀ 𝑥  ∈  ran  𝐺 ∀ 𝑦  ∈  ran  𝐺 ∀ 𝑧  ∈  ran  𝐺 ( ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 )  =  ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) )  ∧  ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) )  =  ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) )  ∧  ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 )  =  ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) )  ∧  ∃ 𝑥  ∈  ran  𝐺 ∀ 𝑦  ∈  ran  𝐺 ( ( 𝑥 𝐻 𝑦 )  =  𝑦  ∧  ( 𝑦 𝐻 𝑥 )  =  𝑦 ) ) ) ) ) | 
						
							| 38 | 30 37 | mpbird | ⊢ ( 𝜑  →  〈 𝐺 ,  𝐻 〉  ∈  RingOps ) |