Step |
Hyp |
Ref |
Expression |
1 |
|
rngisoval.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
rngisoval.2 |
⊢ 𝑋 = ran 𝐺 |
3 |
|
rngisoval.3 |
⊢ 𝐽 = ( 1st ‘ 𝑆 ) |
4 |
|
rngisoval.4 |
⊢ 𝑌 = ran 𝐽 |
5 |
1 2 3 4
|
rngoisoval |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) → ( 𝑅 RngIso 𝑆 ) = { 𝑓 ∈ ( 𝑅 RngHom 𝑆 ) ∣ 𝑓 : 𝑋 –1-1-onto→ 𝑌 } ) |
6 |
5
|
eleq2d |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) → ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝑅 RngHom 𝑆 ) ∣ 𝑓 : 𝑋 –1-1-onto→ 𝑌 } ) ) |
7 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 : 𝑋 –1-1-onto→ 𝑌 ↔ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) |
8 |
7
|
elrab |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝑅 RngHom 𝑆 ) ∣ 𝑓 : 𝑋 –1-1-onto→ 𝑌 } ↔ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) |
9 |
6 8
|
bitrdi |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ) → ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ) ) |