Description: The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018) (Revised by AV, 18-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isrusgr | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍 ) → ( 𝐺 RegUSGraph 𝐾 ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 ∈ USGraph ↔ 𝐺 ∈ USGraph ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑘 = 𝐾 ) → ( 𝑔 ∈ USGraph ↔ 𝐺 ∈ USGraph ) ) |
| 3 | breq12 | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑘 = 𝐾 ) → ( 𝑔 RegGraph 𝑘 ↔ 𝐺 RegGraph 𝐾 ) ) | |
| 4 | 2 3 | anbi12d | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑘 = 𝐾 ) → ( ( 𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘 ) ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾 ) ) ) |
| 5 | df-rusgr | ⊢ RegUSGraph = { 〈 𝑔 , 𝑘 〉 ∣ ( 𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘 ) } | |
| 6 | 4 5 | brabga | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍 ) → ( 𝐺 RegUSGraph 𝐾 ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾 ) ) ) |