Step |
Hyp |
Ref |
Expression |
1 |
|
isrusgr0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
isrusgr0.d |
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) |
3 |
|
isrusgr |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍 ) → ( 𝐺 RegUSGraph 𝐾 ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾 ) ) ) |
4 |
1 2
|
isrgr |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍 ) → ( 𝐺 RegGraph 𝐾 ↔ ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) ) ) |
5 |
4
|
anbi2d |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍 ) → ( ( 𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾 ) ↔ ( 𝐺 ∈ USGraph ∧ ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) ) ) ) |
6 |
|
3anass |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) ↔ ( 𝐺 ∈ USGraph ∧ ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) ) ) |
7 |
5 6
|
bitr4di |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍 ) → ( ( 𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾 ) ↔ ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) ) ) |
8 |
3 7
|
bitrd |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍 ) → ( 𝐺 RegUSGraph 𝐾 ↔ ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) ) ) |