Step |
Hyp |
Ref |
Expression |
1 |
|
issect.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
issect.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
issect.o |
⊢ · = ( comp ‘ 𝐶 ) |
4 |
|
issect.i |
⊢ 1 = ( Id ‘ 𝐶 ) |
5 |
|
issect.s |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
6 |
|
issect.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
7 |
|
issect.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
issect.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
|
issect.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
10 |
|
issect.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) |
11 |
9 10
|
jca |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ) |
12 |
1 2 3 4 5 6 7 8
|
issect |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) ) |
13 |
|
df-3an |
⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) |
14 |
12 13
|
bitrdi |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) ) |
15 |
11 14
|
mpbirand |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) |