Metamath Proof Explorer


Theorem issetft

Description: Closed theorem form of isset that does not require x and A to be distinct. Extracted from the proof of vtoclgft . (Contributed by Wolf Lammen, 9-Apr-2025)

Ref Expression
Assertion issetft ( 𝑥 𝐴 → ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 isset ( 𝐴 ∈ V ↔ ∃ 𝑦 𝑦 = 𝐴 )
2 nfv 𝑦 𝑥 𝐴
3 nfnfc1 𝑥 𝑥 𝐴
4 nfcvd ( 𝑥 𝐴 𝑥 𝑦 )
5 id ( 𝑥 𝐴 𝑥 𝐴 )
6 4 5 nfeqd ( 𝑥 𝐴 → Ⅎ 𝑥 𝑦 = 𝐴 )
7 6 nfnd ( 𝑥 𝐴 → Ⅎ 𝑥 ¬ 𝑦 = 𝐴 )
8 nfvd ( 𝑥 𝐴 → Ⅎ 𝑦 ¬ 𝑥 = 𝐴 )
9 eqeq1 ( 𝑦 = 𝑥 → ( 𝑦 = 𝐴𝑥 = 𝐴 ) )
10 9 notbid ( 𝑦 = 𝑥 → ( ¬ 𝑦 = 𝐴 ↔ ¬ 𝑥 = 𝐴 ) )
11 10 a1i ( 𝑥 𝐴 → ( 𝑦 = 𝑥 → ( ¬ 𝑦 = 𝐴 ↔ ¬ 𝑥 = 𝐴 ) ) )
12 2 3 7 8 11 cbv2w ( 𝑥 𝐴 → ( ∀ 𝑦 ¬ 𝑦 = 𝐴 ↔ ∀ 𝑥 ¬ 𝑥 = 𝐴 ) )
13 alnex ( ∀ 𝑦 ¬ 𝑦 = 𝐴 ↔ ¬ ∃ 𝑦 𝑦 = 𝐴 )
14 alnex ( ∀ 𝑥 ¬ 𝑥 = 𝐴 ↔ ¬ ∃ 𝑥 𝑥 = 𝐴 )
15 12 13 14 3bitr3g ( 𝑥 𝐴 → ( ¬ ∃ 𝑦 𝑦 = 𝐴 ↔ ¬ ∃ 𝑥 𝑥 = 𝐴 ) )
16 15 con4bid ( 𝑥 𝐴 → ( ∃ 𝑦 𝑦 = 𝐴 ↔ ∃ 𝑥 𝑥 = 𝐴 ) )
17 1 16 bitrid ( 𝑥 𝐴 → ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 ) )