Step |
Hyp |
Ref |
Expression |
1 |
|
isset |
⊢ ( 𝐴 ∈ V ↔ ∃ 𝑦 𝑦 = 𝐴 ) |
2 |
|
nfv |
⊢ Ⅎ 𝑦 Ⅎ 𝑥 𝐴 |
3 |
|
nfnfc1 |
⊢ Ⅎ 𝑥 Ⅎ 𝑥 𝐴 |
4 |
|
nfcvd |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝑦 ) |
5 |
|
id |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝐴 ) |
6 |
4 5
|
nfeqd |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝑦 = 𝐴 ) |
7 |
6
|
nfnd |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 ¬ 𝑦 = 𝐴 ) |
8 |
|
nfvd |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑦 ¬ 𝑥 = 𝐴 ) |
9 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = 𝐴 ↔ 𝑥 = 𝐴 ) ) |
10 |
9
|
notbid |
⊢ ( 𝑦 = 𝑥 → ( ¬ 𝑦 = 𝐴 ↔ ¬ 𝑥 = 𝐴 ) ) |
11 |
10
|
a1i |
⊢ ( Ⅎ 𝑥 𝐴 → ( 𝑦 = 𝑥 → ( ¬ 𝑦 = 𝐴 ↔ ¬ 𝑥 = 𝐴 ) ) ) |
12 |
2 3 7 8 11
|
cbv2w |
⊢ ( Ⅎ 𝑥 𝐴 → ( ∀ 𝑦 ¬ 𝑦 = 𝐴 ↔ ∀ 𝑥 ¬ 𝑥 = 𝐴 ) ) |
13 |
|
alnex |
⊢ ( ∀ 𝑦 ¬ 𝑦 = 𝐴 ↔ ¬ ∃ 𝑦 𝑦 = 𝐴 ) |
14 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ 𝑥 = 𝐴 ↔ ¬ ∃ 𝑥 𝑥 = 𝐴 ) |
15 |
12 13 14
|
3bitr3g |
⊢ ( Ⅎ 𝑥 𝐴 → ( ¬ ∃ 𝑦 𝑦 = 𝐴 ↔ ¬ ∃ 𝑥 𝑥 = 𝐴 ) ) |
16 |
15
|
con4bid |
⊢ ( Ⅎ 𝑥 𝐴 → ( ∃ 𝑦 𝑦 = 𝐴 ↔ ∃ 𝑥 𝑥 = 𝐴 ) ) |
17 |
1 16
|
bitrid |
⊢ ( Ⅎ 𝑥 𝐴 → ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 ) ) |