Step |
Hyp |
Ref |
Expression |
1 |
|
issgrp.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
issgrp.o |
⊢ ⚬ = ( +g ‘ 𝑀 ) |
3 |
|
fvexd |
⊢ ( 𝑔 = 𝑀 → ( Base ‘ 𝑔 ) ∈ V ) |
4 |
|
fveq2 |
⊢ ( 𝑔 = 𝑀 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝑀 ) ) |
5 |
4 1
|
eqtr4di |
⊢ ( 𝑔 = 𝑀 → ( Base ‘ 𝑔 ) = 𝐵 ) |
6 |
|
fvexd |
⊢ ( ( 𝑔 = 𝑀 ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑔 ) ∈ V ) |
7 |
|
fveq2 |
⊢ ( 𝑔 = 𝑀 → ( +g ‘ 𝑔 ) = ( +g ‘ 𝑀 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝑔 = 𝑀 ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑔 ) = ( +g ‘ 𝑀 ) ) |
9 |
8 2
|
eqtr4di |
⊢ ( ( 𝑔 = 𝑀 ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑔 ) = ⚬ ) |
10 |
|
simplr |
⊢ ( ( ( 𝑔 = 𝑀 ∧ 𝑏 = 𝐵 ) ∧ 𝑜 = ⚬ ) → 𝑏 = 𝐵 ) |
11 |
|
id |
⊢ ( 𝑜 = ⚬ → 𝑜 = ⚬ ) |
12 |
|
oveq |
⊢ ( 𝑜 = ⚬ → ( 𝑥 𝑜 𝑦 ) = ( 𝑥 ⚬ 𝑦 ) ) |
13 |
|
eqidd |
⊢ ( 𝑜 = ⚬ → 𝑧 = 𝑧 ) |
14 |
11 12 13
|
oveq123d |
⊢ ( 𝑜 = ⚬ → ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) ) |
15 |
|
eqidd |
⊢ ( 𝑜 = ⚬ → 𝑥 = 𝑥 ) |
16 |
|
oveq |
⊢ ( 𝑜 = ⚬ → ( 𝑦 𝑜 𝑧 ) = ( 𝑦 ⚬ 𝑧 ) ) |
17 |
11 15 16
|
oveq123d |
⊢ ( 𝑜 = ⚬ → ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) |
18 |
14 17
|
eqeq12d |
⊢ ( 𝑜 = ⚬ → ( ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) ↔ ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝑔 = 𝑀 ∧ 𝑏 = 𝐵 ) ∧ 𝑜 = ⚬ ) → ( ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) ↔ ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
20 |
10 19
|
raleqbidv |
⊢ ( ( ( 𝑔 = 𝑀 ∧ 𝑏 = 𝐵 ) ∧ 𝑜 = ⚬ ) → ( ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
21 |
10 20
|
raleqbidv |
⊢ ( ( ( 𝑔 = 𝑀 ∧ 𝑏 = 𝐵 ) ∧ 𝑜 = ⚬ ) → ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
22 |
10 21
|
raleqbidv |
⊢ ( ( ( 𝑔 = 𝑀 ∧ 𝑏 = 𝐵 ) ∧ 𝑜 = ⚬ ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
23 |
6 9 22
|
sbcied2 |
⊢ ( ( 𝑔 = 𝑀 ∧ 𝑏 = 𝐵 ) → ( [ ( +g ‘ 𝑔 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
24 |
3 5 23
|
sbcied2 |
⊢ ( 𝑔 = 𝑀 → ( [ ( Base ‘ 𝑔 ) / 𝑏 ] [ ( +g ‘ 𝑔 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
25 |
|
df-sgrp |
⊢ Smgrp = { 𝑔 ∈ Mgm ∣ [ ( Base ‘ 𝑔 ) / 𝑏 ] [ ( +g ‘ 𝑔 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑥 𝑜 𝑦 ) 𝑜 𝑧 ) = ( 𝑥 𝑜 ( 𝑦 𝑜 𝑧 ) ) } |
26 |
24 25
|
elrab2 |
⊢ ( 𝑀 ∈ Smgrp ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |