Step |
Hyp |
Ref |
Expression |
1 |
|
issh |
⊢ ( 𝐻 ∈ Sℋ ↔ ( ( 𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻 ) ∧ ( ( +ℎ “ ( 𝐻 × 𝐻 ) ) ⊆ 𝐻 ∧ ( ·ℎ “ ( ℂ × 𝐻 ) ) ⊆ 𝐻 ) ) ) |
2 |
|
ax-hfvadd |
⊢ +ℎ : ( ℋ × ℋ ) ⟶ ℋ |
3 |
|
ffun |
⊢ ( +ℎ : ( ℋ × ℋ ) ⟶ ℋ → Fun +ℎ ) |
4 |
2 3
|
ax-mp |
⊢ Fun +ℎ |
5 |
|
xpss12 |
⊢ ( ( 𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ ) → ( 𝐻 × 𝐻 ) ⊆ ( ℋ × ℋ ) ) |
6 |
5
|
anidms |
⊢ ( 𝐻 ⊆ ℋ → ( 𝐻 × 𝐻 ) ⊆ ( ℋ × ℋ ) ) |
7 |
2
|
fdmi |
⊢ dom +ℎ = ( ℋ × ℋ ) |
8 |
6 7
|
sseqtrrdi |
⊢ ( 𝐻 ⊆ ℋ → ( 𝐻 × 𝐻 ) ⊆ dom +ℎ ) |
9 |
|
funimassov |
⊢ ( ( Fun +ℎ ∧ ( 𝐻 × 𝐻 ) ⊆ dom +ℎ ) → ( ( +ℎ “ ( 𝐻 × 𝐻 ) ) ⊆ 𝐻 ↔ ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ) ) |
10 |
4 8 9
|
sylancr |
⊢ ( 𝐻 ⊆ ℋ → ( ( +ℎ “ ( 𝐻 × 𝐻 ) ) ⊆ 𝐻 ↔ ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ) ) |
11 |
|
ax-hfvmul |
⊢ ·ℎ : ( ℂ × ℋ ) ⟶ ℋ |
12 |
|
ffun |
⊢ ( ·ℎ : ( ℂ × ℋ ) ⟶ ℋ → Fun ·ℎ ) |
13 |
11 12
|
ax-mp |
⊢ Fun ·ℎ |
14 |
|
xpss2 |
⊢ ( 𝐻 ⊆ ℋ → ( ℂ × 𝐻 ) ⊆ ( ℂ × ℋ ) ) |
15 |
11
|
fdmi |
⊢ dom ·ℎ = ( ℂ × ℋ ) |
16 |
14 15
|
sseqtrrdi |
⊢ ( 𝐻 ⊆ ℋ → ( ℂ × 𝐻 ) ⊆ dom ·ℎ ) |
17 |
|
funimassov |
⊢ ( ( Fun ·ℎ ∧ ( ℂ × 𝐻 ) ⊆ dom ·ℎ ) → ( ( ·ℎ “ ( ℂ × 𝐻 ) ) ⊆ 𝐻 ↔ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) ) |
18 |
13 16 17
|
sylancr |
⊢ ( 𝐻 ⊆ ℋ → ( ( ·ℎ “ ( ℂ × 𝐻 ) ) ⊆ 𝐻 ↔ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) ) |
19 |
10 18
|
anbi12d |
⊢ ( 𝐻 ⊆ ℋ → ( ( ( +ℎ “ ( 𝐻 × 𝐻 ) ) ⊆ 𝐻 ∧ ( ·ℎ “ ( ℂ × 𝐻 ) ) ⊆ 𝐻 ) ↔ ( ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻 ) → ( ( ( +ℎ “ ( 𝐻 × 𝐻 ) ) ⊆ 𝐻 ∧ ( ·ℎ “ ( ℂ × 𝐻 ) ) ⊆ 𝐻 ) ↔ ( ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) ) ) |
21 |
20
|
pm5.32i |
⊢ ( ( ( 𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻 ) ∧ ( ( +ℎ “ ( 𝐻 × 𝐻 ) ) ⊆ 𝐻 ∧ ( ·ℎ “ ( ℂ × 𝐻 ) ) ⊆ 𝐻 ) ) ↔ ( ( 𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻 ) ∧ ( ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) ) ) |
22 |
1 21
|
bitri |
⊢ ( 𝐻 ∈ Sℋ ↔ ( ( 𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻 ) ∧ ( ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) ) ) |