Metamath Proof Explorer


Theorem issh3

Description: Subspace H of a Hilbert space. (Contributed by NM, 16-Aug-1999) (New usage is discouraged.)

Ref Expression
Assertion issh3 ( 𝐻 ⊆ ℋ → ( 𝐻S ↔ ( 0𝐻 ∧ ( ∀ 𝑥𝐻𝑦𝐻 ( 𝑥 + 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦𝐻 ( 𝑥 · 𝑦 ) ∈ 𝐻 ) ) ) )

Proof

Step Hyp Ref Expression
1 issh2 ( 𝐻S ↔ ( ( 𝐻 ⊆ ℋ ∧ 0𝐻 ) ∧ ( ∀ 𝑥𝐻𝑦𝐻 ( 𝑥 + 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦𝐻 ( 𝑥 · 𝑦 ) ∈ 𝐻 ) ) )
2 anass ( ( ( 𝐻 ⊆ ℋ ∧ 0𝐻 ) ∧ ( ∀ 𝑥𝐻𝑦𝐻 ( 𝑥 + 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦𝐻 ( 𝑥 · 𝑦 ) ∈ 𝐻 ) ) ↔ ( 𝐻 ⊆ ℋ ∧ ( 0𝐻 ∧ ( ∀ 𝑥𝐻𝑦𝐻 ( 𝑥 + 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦𝐻 ( 𝑥 · 𝑦 ) ∈ 𝐻 ) ) ) )
3 2 baib ( 𝐻 ⊆ ℋ → ( ( ( 𝐻 ⊆ ℋ ∧ 0𝐻 ) ∧ ( ∀ 𝑥𝐻𝑦𝐻 ( 𝑥 + 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦𝐻 ( 𝑥 · 𝑦 ) ∈ 𝐻 ) ) ↔ ( 0𝐻 ∧ ( ∀ 𝑥𝐻𝑦𝐻 ( 𝑥 + 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦𝐻 ( 𝑥 · 𝑦 ) ∈ 𝐻 ) ) ) )
4 1 3 syl5bb ( 𝐻 ⊆ ℋ → ( 𝐻S ↔ ( 0𝐻 ∧ ( ∀ 𝑥𝐻𝑦𝐻 ( 𝑥 + 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦𝐻 ( 𝑥 · 𝑦 ) ∈ 𝐻 ) ) ) )