| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issh2 | ⊢ ( 𝐻  ∈   Sℋ   ↔  ( ( 𝐻  ⊆   ℋ  ∧  0ℎ  ∈  𝐻 )  ∧  ( ∀ 𝑥  ∈  𝐻 ∀ 𝑦  ∈  𝐻 ( 𝑥  +ℎ  𝑦 )  ∈  𝐻  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝐻 ( 𝑥  ·ℎ  𝑦 )  ∈  𝐻 ) ) ) | 
						
							| 2 |  | anass | ⊢ ( ( ( 𝐻  ⊆   ℋ  ∧  0ℎ  ∈  𝐻 )  ∧  ( ∀ 𝑥  ∈  𝐻 ∀ 𝑦  ∈  𝐻 ( 𝑥  +ℎ  𝑦 )  ∈  𝐻  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝐻 ( 𝑥  ·ℎ  𝑦 )  ∈  𝐻 ) )  ↔  ( 𝐻  ⊆   ℋ  ∧  ( 0ℎ  ∈  𝐻  ∧  ( ∀ 𝑥  ∈  𝐻 ∀ 𝑦  ∈  𝐻 ( 𝑥  +ℎ  𝑦 )  ∈  𝐻  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝐻 ( 𝑥  ·ℎ  𝑦 )  ∈  𝐻 ) ) ) ) | 
						
							| 3 | 2 | baib | ⊢ ( 𝐻  ⊆   ℋ  →  ( ( ( 𝐻  ⊆   ℋ  ∧  0ℎ  ∈  𝐻 )  ∧  ( ∀ 𝑥  ∈  𝐻 ∀ 𝑦  ∈  𝐻 ( 𝑥  +ℎ  𝑦 )  ∈  𝐻  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝐻 ( 𝑥  ·ℎ  𝑦 )  ∈  𝐻 ) )  ↔  ( 0ℎ  ∈  𝐻  ∧  ( ∀ 𝑥  ∈  𝐻 ∀ 𝑦  ∈  𝐻 ( 𝑥  +ℎ  𝑦 )  ∈  𝐻  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝐻 ( 𝑥  ·ℎ  𝑦 )  ∈  𝐻 ) ) ) ) | 
						
							| 4 | 1 3 | bitrid | ⊢ ( 𝐻  ⊆   ℋ  →  ( 𝐻  ∈   Sℋ   ↔  ( 0ℎ  ∈  𝐻  ∧  ( ∀ 𝑥  ∈  𝐻 ∀ 𝑦  ∈  𝐻 ( 𝑥  +ℎ  𝑦 )  ∈  𝐻  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝐻 ( 𝑥  ·ℎ  𝑦 )  ∈  𝐻 ) ) ) ) |