| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-slw | ⊢  pSyl   =  ( 𝑝  ∈  ℙ ,  𝑔  ∈  Grp  ↦  { ℎ  ∈  ( SubGrp ‘ 𝑔 )  ∣  ∀ 𝑘  ∈  ( SubGrp ‘ 𝑔 ) ( ( ℎ  ⊆  𝑘  ∧  𝑝  pGrp  ( 𝑔  ↾s  𝑘 ) )  ↔  ℎ  =  𝑘 ) } ) | 
						
							| 2 | 1 | elmpocl | ⊢ ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  →  ( 𝑃  ∈  ℙ  ∧  𝐺  ∈  Grp ) ) | 
						
							| 3 |  | simp1 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  𝐻  =  𝑘 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 4 |  | subgrcl | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp ) | 
						
							| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  𝐻  =  𝑘 ) )  →  𝐺  ∈  Grp ) | 
						
							| 6 | 3 5 | jca | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  𝐻  =  𝑘 ) )  →  ( 𝑃  ∈  ℙ  ∧  𝐺  ∈  Grp ) ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑔  =  𝐺 )  →  𝑔  =  𝐺 ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑔  =  𝐺 )  →  ( SubGrp ‘ 𝑔 )  =  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 9 |  | simpl | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑔  =  𝐺 )  →  𝑝  =  𝑃 ) | 
						
							| 10 | 7 | oveq1d | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑔  =  𝐺 )  →  ( 𝑔  ↾s  𝑘 )  =  ( 𝐺  ↾s  𝑘 ) ) | 
						
							| 11 | 9 10 | breq12d | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑔  =  𝐺 )  →  ( 𝑝  pGrp  ( 𝑔  ↾s  𝑘 )  ↔  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) | 
						
							| 12 | 11 | anbi2d | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑔  =  𝐺 )  →  ( ( ℎ  ⊆  𝑘  ∧  𝑝  pGrp  ( 𝑔  ↾s  𝑘 ) )  ↔  ( ℎ  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) ) | 
						
							| 13 | 12 | bibi1d | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑔  =  𝐺 )  →  ( ( ( ℎ  ⊆  𝑘  ∧  𝑝  pGrp  ( 𝑔  ↾s  𝑘 ) )  ↔  ℎ  =  𝑘 )  ↔  ( ( ℎ  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  ℎ  =  𝑘 ) ) ) | 
						
							| 14 | 8 13 | raleqbidv | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑔  =  𝐺 )  →  ( ∀ 𝑘  ∈  ( SubGrp ‘ 𝑔 ) ( ( ℎ  ⊆  𝑘  ∧  𝑝  pGrp  ( 𝑔  ↾s  𝑘 ) )  ↔  ℎ  =  𝑘 )  ↔  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( ℎ  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  ℎ  =  𝑘 ) ) ) | 
						
							| 15 | 8 14 | rabeqbidv | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑔  =  𝐺 )  →  { ℎ  ∈  ( SubGrp ‘ 𝑔 )  ∣  ∀ 𝑘  ∈  ( SubGrp ‘ 𝑔 ) ( ( ℎ  ⊆  𝑘  ∧  𝑝  pGrp  ( 𝑔  ↾s  𝑘 ) )  ↔  ℎ  =  𝑘 ) }  =  { ℎ  ∈  ( SubGrp ‘ 𝐺 )  ∣  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( ℎ  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  ℎ  =  𝑘 ) } ) | 
						
							| 16 |  | fvex | ⊢ ( SubGrp ‘ 𝐺 )  ∈  V | 
						
							| 17 | 16 | rabex | ⊢ { ℎ  ∈  ( SubGrp ‘ 𝐺 )  ∣  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( ℎ  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  ℎ  =  𝑘 ) }  ∈  V | 
						
							| 18 | 15 1 17 | ovmpoa | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐺  ∈  Grp )  →  ( 𝑃  pSyl  𝐺 )  =  { ℎ  ∈  ( SubGrp ‘ 𝐺 )  ∣  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( ℎ  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  ℎ  =  𝑘 ) } ) | 
						
							| 19 | 18 | eleq2d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐺  ∈  Grp )  →  ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  ↔  𝐻  ∈  { ℎ  ∈  ( SubGrp ‘ 𝐺 )  ∣  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( ℎ  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  ℎ  =  𝑘 ) } ) ) | 
						
							| 20 |  | cleq1lem | ⊢ ( ℎ  =  𝐻  →  ( ( ℎ  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) ) | 
						
							| 21 |  | eqeq1 | ⊢ ( ℎ  =  𝐻  →  ( ℎ  =  𝑘  ↔  𝐻  =  𝑘 ) ) | 
						
							| 22 | 20 21 | bibi12d | ⊢ ( ℎ  =  𝐻  →  ( ( ( ℎ  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  ℎ  =  𝑘 )  ↔  ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  𝐻  =  𝑘 ) ) ) | 
						
							| 23 | 22 | ralbidv | ⊢ ( ℎ  =  𝐻  →  ( ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( ℎ  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  ℎ  =  𝑘 )  ↔  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  𝐻  =  𝑘 ) ) ) | 
						
							| 24 | 23 | elrab | ⊢ ( 𝐻  ∈  { ℎ  ∈  ( SubGrp ‘ 𝐺 )  ∣  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( ℎ  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  ℎ  =  𝑘 ) }  ↔  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  𝐻  =  𝑘 ) ) ) | 
						
							| 25 | 19 24 | bitrdi | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐺  ∈  Grp )  →  ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  ↔  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  𝐻  =  𝑘 ) ) ) ) | 
						
							| 26 |  | simpl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐺  ∈  Grp )  →  𝑃  ∈  ℙ ) | 
						
							| 27 | 26 | biantrurd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐺  ∈  Grp )  →  ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  𝐻  =  𝑘 ) )  ↔  ( 𝑃  ∈  ℙ  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  𝐻  =  𝑘 ) ) ) ) ) | 
						
							| 28 | 25 27 | bitrd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐺  ∈  Grp )  →  ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  ↔  ( 𝑃  ∈  ℙ  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  𝐻  =  𝑘 ) ) ) ) ) | 
						
							| 29 |  | 3anass | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  𝐻  =  𝑘 ) )  ↔  ( 𝑃  ∈  ℙ  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  𝐻  =  𝑘 ) ) ) ) | 
						
							| 30 | 28 29 | bitr4di | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐺  ∈  Grp )  →  ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  ↔  ( 𝑃  ∈  ℙ  ∧  𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  𝐻  =  𝑘 ) ) ) ) | 
						
							| 31 | 2 6 30 | pm5.21nii | ⊢ ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  ↔  ( 𝑃  ∈  ℙ  ∧  𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  𝐻  =  𝑘 ) ) ) |