| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issmgrpOLD.1 | ⊢ 𝑋  =  dom  dom  𝐺 | 
						
							| 2 |  | df-sgrOLD | ⊢ SemiGrp  =  ( Magma  ∩  Ass ) | 
						
							| 3 | 2 | eleq2i | ⊢ ( 𝐺  ∈  SemiGrp  ↔  𝐺  ∈  ( Magma  ∩  Ass ) ) | 
						
							| 4 |  | elin | ⊢ ( 𝐺  ∈  ( Magma  ∩  Ass )  ↔  ( 𝐺  ∈  Magma  ∧  𝐺  ∈  Ass ) ) | 
						
							| 5 | 1 | ismgmOLD | ⊢ ( 𝐺  ∈  𝐴  →  ( 𝐺  ∈  Magma  ↔  𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋 ) ) | 
						
							| 6 | 1 | isass | ⊢ ( 𝐺  ∈  𝐴  →  ( 𝐺  ∈  Ass  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) | 
						
							| 7 | 5 6 | anbi12d | ⊢ ( 𝐺  ∈  𝐴  →  ( ( 𝐺  ∈  Magma  ∧  𝐺  ∈  Ass )  ↔  ( 𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) ) | 
						
							| 8 | 4 7 | bitrid | ⊢ ( 𝐺  ∈  𝐴  →  ( 𝐺  ∈  ( Magma  ∩  Ass )  ↔  ( 𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) ) | 
						
							| 9 | 3 8 | bitrid | ⊢ ( 𝐺  ∈  𝐴  →  ( 𝐺  ∈  SemiGrp  ↔  ( 𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) ) |