Step |
Hyp |
Ref |
Expression |
1 |
|
issmo.1 |
⊢ 𝐴 : 𝐵 ⟶ On |
2 |
|
issmo.2 |
⊢ Ord 𝐵 |
3 |
|
issmo.3 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) |
4 |
|
issmo.4 |
⊢ dom 𝐴 = 𝐵 |
5 |
4
|
feq2i |
⊢ ( 𝐴 : dom 𝐴 ⟶ On ↔ 𝐴 : 𝐵 ⟶ On ) |
6 |
1 5
|
mpbir |
⊢ 𝐴 : dom 𝐴 ⟶ On |
7 |
|
ordeq |
⊢ ( dom 𝐴 = 𝐵 → ( Ord dom 𝐴 ↔ Ord 𝐵 ) ) |
8 |
4 7
|
ax-mp |
⊢ ( Ord dom 𝐴 ↔ Ord 𝐵 ) |
9 |
2 8
|
mpbir |
⊢ Ord dom 𝐴 |
10 |
4
|
eleq2i |
⊢ ( 𝑥 ∈ dom 𝐴 ↔ 𝑥 ∈ 𝐵 ) |
11 |
4
|
eleq2i |
⊢ ( 𝑦 ∈ dom 𝐴 ↔ 𝑦 ∈ 𝐵 ) |
12 |
10 11 3
|
syl2anb |
⊢ ( ( 𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ dom 𝐴 ) → ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) |
13 |
12
|
rgen2 |
⊢ ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) |
14 |
|
df-smo |
⊢ ( Smo 𝐴 ↔ ( 𝐴 : dom 𝐴 ⟶ On ∧ Ord dom 𝐴 ∧ ∀ 𝑥 ∈ dom 𝐴 ∀ 𝑦 ∈ dom 𝐴 ( 𝑥 ∈ 𝑦 → ( 𝐴 ‘ 𝑥 ) ∈ ( 𝐴 ‘ 𝑦 ) ) ) ) |
15 |
6 9 13 14
|
mpbir3an |
⊢ Smo 𝐴 |