Step |
Hyp |
Ref |
Expression |
1 |
|
fss |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ On ) → 𝐹 : 𝐴 ⟶ On ) |
2 |
1
|
ex |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐵 ⊆ On → 𝐹 : 𝐴 ⟶ On ) ) |
3 |
|
fdm |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → dom 𝐹 = 𝐴 ) |
4 |
3
|
feq2d |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 : dom 𝐹 ⟶ On ↔ 𝐹 : 𝐴 ⟶ On ) ) |
5 |
2 4
|
sylibrd |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐵 ⊆ On → 𝐹 : dom 𝐹 ⟶ On ) ) |
6 |
|
ordeq |
⊢ ( dom 𝐹 = 𝐴 → ( Ord dom 𝐹 ↔ Ord 𝐴 ) ) |
7 |
3 6
|
syl |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( Ord dom 𝐹 ↔ Ord 𝐴 ) ) |
8 |
7
|
biimprd |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( Ord 𝐴 → Ord dom 𝐹 ) ) |
9 |
3
|
raleqdv |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
10 |
9
|
biimprd |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) → ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
11 |
5 8 10
|
3anim123d |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 : dom 𝐹 ⟶ On ∧ Ord dom 𝐹 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) |
12 |
|
dfsmo2 |
⊢ ( Smo 𝐹 ↔ ( 𝐹 : dom 𝐹 ⟶ On ∧ Ord dom 𝐹 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
13 |
11 12
|
syl6ibr |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑥 ) ) → Smo 𝐹 ) ) |