Step |
Hyp |
Ref |
Expression |
1 |
|
equcom |
⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) |
2 |
1
|
a1i |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) ) |
3 |
2
|
ralbidv |
⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 = 𝑥 ) ) |
4 |
|
ne0i |
⊢ ( 𝑥 ∈ 𝐴 → 𝐴 ≠ ∅ ) |
5 |
|
eqsn |
⊢ ( 𝐴 ≠ ∅ → ( 𝐴 = { 𝑥 } ↔ ∀ 𝑦 ∈ 𝐴 𝑦 = 𝑥 ) ) |
6 |
4 5
|
syl |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝐴 = { 𝑥 } ↔ ∀ 𝑦 ∈ 𝐴 𝑦 = 𝑥 ) ) |
7 |
3 6
|
bitr4d |
⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 ↔ 𝐴 = { 𝑥 } ) ) |
8 |
|
sneq |
⊢ ( 𝑧 = 𝑥 → { 𝑧 } = { 𝑥 } ) |
9 |
8
|
eqeq2d |
⊢ ( 𝑧 = 𝑥 → ( 𝐴 = { 𝑧 } ↔ 𝐴 = { 𝑥 } ) ) |
10 |
9
|
spcegv |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝐴 = { 𝑥 } → ∃ 𝑧 𝐴 = { 𝑧 } ) ) |
11 |
7 10
|
sylbid |
⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 → ∃ 𝑧 𝐴 = { 𝑧 } ) ) |
12 |
11
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 → ∃ 𝑧 𝐴 = { 𝑧 } ) |