| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isso2i.1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ↔ ¬ ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 2 |
|
isso2i.2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 3 |
|
equid |
⊢ 𝑥 = 𝑥 |
| 4 |
3
|
orci |
⊢ ( 𝑥 = 𝑥 ∨ 𝑥 𝑅 𝑥 ) |
| 5 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 = 𝑥 ∨ 𝑥 𝑅 𝑥 ) ↔ ¬ 𝑥 𝑅 𝑥 ) ) |
| 6 |
|
eleq1w |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
| 7 |
6
|
anbi2d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ) |
| 8 |
|
equequ2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑥 ) ) |
| 9 |
|
breq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 𝑅 𝑥 ↔ 𝑥 𝑅 𝑥 ) ) |
| 10 |
8 9
|
orbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 = 𝑥 ∨ 𝑥 𝑅 𝑥 ) ) ) |
| 11 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑅 𝑥 ) ) |
| 12 |
11
|
notbid |
⊢ ( 𝑦 = 𝑥 → ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ 𝑥 𝑅 𝑥 ) ) |
| 13 |
10 12
|
bibi12d |
⊢ ( 𝑦 = 𝑥 → ( ( ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ¬ 𝑥 𝑅 𝑦 ) ↔ ( ( 𝑥 = 𝑥 ∨ 𝑥 𝑅 𝑥 ) ↔ ¬ 𝑥 𝑅 𝑥 ) ) ) |
| 14 |
7 13
|
imbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ¬ 𝑥 𝑅 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 = 𝑥 ∨ 𝑥 𝑅 𝑥 ) ↔ ¬ 𝑥 𝑅 𝑥 ) ) ) ) |
| 15 |
1
|
con2bid |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ¬ 𝑥 𝑅 𝑦 ) ) |
| 16 |
5 14 15
|
chvarfv |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 = 𝑥 ∨ 𝑥 𝑅 𝑥 ) ↔ ¬ 𝑥 𝑅 𝑥 ) ) |
| 17 |
4 16
|
mpbii |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 𝑅 𝑥 ) |
| 18 |
17
|
anidms |
⊢ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) |
| 19 |
15
|
biimprd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ¬ 𝑥 𝑅 𝑦 → ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 20 |
19
|
orrd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ∨ ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 21 |
|
3orass |
⊢ ( ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 𝑅 𝑦 ∨ ( 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 22 |
20 21
|
sylibr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
| 23 |
18 2 22
|
issoi |
⊢ 𝑅 Or 𝐴 |