Metamath Proof Explorer
		
		
		
		Description:  An irreflexive, transitive, linear relation is a strict ordering.
       (Contributed by NM, 21-Jan-1996)  (Revised by Mario Carneiro, 9-Jul-2014)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | issod.1 | ⊢ ( 𝜑  →  𝑅  Po  𝐴 ) | 
					
						|  |  | issod.2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( 𝑥 𝑅 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 𝑅 𝑥 ) ) | 
				
					|  | Assertion | issod | ⊢  ( 𝜑  →  𝑅  Or  𝐴 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issod.1 | ⊢ ( 𝜑  →  𝑅  Po  𝐴 ) | 
						
							| 2 |  | issod.2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( 𝑥 𝑅 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 𝑅 𝑥 ) ) | 
						
							| 3 | 2 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 𝑅 𝑥 ) ) | 
						
							| 4 |  | df-so | ⊢ ( 𝑅  Or  𝐴  ↔  ( 𝑅  Po  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 𝑅 𝑥 ) ) ) | 
						
							| 5 | 1 3 4 | sylanbrc | ⊢ ( 𝜑  →  𝑅  Or  𝐴 ) |