Metamath Proof Explorer


Theorem issoi

Description: An irreflexive, transitive, linear relation is a strict ordering. (Contributed by NM, 21-Jan-1996) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses issoi.1 ( 𝑥𝐴 → ¬ 𝑥 𝑅 𝑥 )
issoi.2 ( ( 𝑥𝐴𝑦𝐴𝑧𝐴 ) → ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) )
issoi.3 ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) )
Assertion issoi 𝑅 Or 𝐴

Proof

Step Hyp Ref Expression
1 issoi.1 ( 𝑥𝐴 → ¬ 𝑥 𝑅 𝑥 )
2 issoi.2 ( ( 𝑥𝐴𝑦𝐴𝑧𝐴 ) → ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) )
3 issoi.3 ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) )
4 1 adantl ( ( ⊤ ∧ 𝑥𝐴 ) → ¬ 𝑥 𝑅 𝑥 )
5 2 adantl ( ( ⊤ ∧ ( 𝑥𝐴𝑦𝐴𝑧𝐴 ) ) → ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) )
6 4 5 ispod ( ⊤ → 𝑅 Po 𝐴 )
7 3 adantl ( ( ⊤ ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) )
8 6 7 issod ( ⊤ → 𝑅 Or 𝐴 )
9 8 mptru 𝑅 Or 𝐴