Step |
Hyp |
Ref |
Expression |
1 |
|
isspthonpth.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
isspthson |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍 ) ) → ( 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) ) ) |
3 |
1
|
istrlson |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍 ) ) → ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) ) ) |
4 |
3
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍 ) ) ∧ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) → ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) ) ) |
5 |
|
spthispth |
⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |
6 |
|
pthistrl |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
7 |
5 6
|
syl |
⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
8 |
7
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍 ) ) ∧ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
9 |
8
|
biantrud |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍 ) ) ∧ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) → ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) ) ) |
10 |
|
spthiswlk |
⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
11 |
10
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍 ) ) ∧ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
12 |
1
|
iswlkon |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍 ) ) → ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
13 |
|
3anass |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
14 |
12 13
|
bitrdi |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍 ) ) → ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) ) |
15 |
14
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍 ) ) ∧ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) → ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) ) |
16 |
11 15
|
mpbirand |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍 ) ) ∧ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) → ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
17 |
4 9 16
|
3bitr2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍 ) ) ∧ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) → ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
18 |
17
|
ex |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍 ) ) → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) ) |
19 |
18
|
pm5.32rd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍 ) ) → ( ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) ↔ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ∧ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) ) ) |
20 |
|
3anass |
⊢ ( ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ↔ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
21 |
|
ancom |
⊢ ( ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ↔ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ∧ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) ) |
22 |
20 21
|
bitr2i |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ∧ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) ↔ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) |
23 |
19 22
|
bitrdi |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍 ) ) → ( ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) ↔ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |
24 |
2 23
|
bitrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍 ) ) → ( 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐵 ) ) ) |