| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issrg.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | issrg.g | ⊢ 𝐺  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 3 |  | issrg.p | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 4 |  | issrg.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 5 |  | issrg.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 6 | 2 | eleq1i | ⊢ ( 𝐺  ∈  Mnd  ↔  ( mulGrp ‘ 𝑅 )  ∈  Mnd ) | 
						
							| 7 | 6 | bicomi | ⊢ ( ( mulGrp ‘ 𝑅 )  ∈  Mnd  ↔  𝐺  ∈  Mnd ) | 
						
							| 8 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 9 | 3 | fvexi | ⊢  +   ∈  V | 
						
							| 10 | 4 | fvexi | ⊢  ·   ∈  V | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  →   ·   ∈  V ) | 
						
							| 12 | 5 | fvexi | ⊢  0   ∈  V | 
						
							| 13 | 12 | a1i | ⊢ ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  →   0   ∈  V ) | 
						
							| 14 |  | simplll | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  𝑏  =  𝐵 ) | 
						
							| 15 |  | simplr | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  𝑡  =   ·  ) | 
						
							| 16 |  | eqidd | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  𝑥  =  𝑥 ) | 
						
							| 17 |  | simpllr | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  𝑝  =   +  ) | 
						
							| 18 | 17 | oveqd | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  ( 𝑦 𝑝 𝑧 )  =  ( 𝑦  +  𝑧 ) ) | 
						
							| 19 | 15 16 18 | oveq123d | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( 𝑥  ·  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 20 | 15 | oveqd | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  ( 𝑥 𝑡 𝑦 )  =  ( 𝑥  ·  𝑦 ) ) | 
						
							| 21 | 15 | oveqd | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  ( 𝑥 𝑡 𝑧 )  =  ( 𝑥  ·  𝑧 ) ) | 
						
							| 22 | 17 20 21 | oveq123d | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  +  ( 𝑥  ·  𝑧 ) ) ) | 
						
							| 23 | 19 22 | eqeq12d | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ↔  ( 𝑥  ·  ( 𝑦  +  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  +  ( 𝑥  ·  𝑧 ) ) ) ) | 
						
							| 24 | 17 | oveqd | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  ( 𝑥 𝑝 𝑦 )  =  ( 𝑥  +  𝑦 ) ) | 
						
							| 25 |  | eqidd | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  𝑧  =  𝑧 ) | 
						
							| 26 | 15 24 25 | oveq123d | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥  +  𝑦 )  ·  𝑧 ) ) | 
						
							| 27 | 15 | oveqd | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  ( 𝑦 𝑡 𝑧 )  =  ( 𝑦  ·  𝑧 ) ) | 
						
							| 28 | 17 21 27 | oveq123d | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) )  =  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) ) ) | 
						
							| 29 | 26 28 | eqeq12d | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  ( ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) )  ↔  ( ( 𝑥  +  𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) ) ) ) | 
						
							| 30 | 23 29 | anbi12d | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  ( ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ↔  ( ( 𝑥  ·  ( 𝑦  +  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  +  ( 𝑥  ·  𝑧 ) )  ∧  ( ( 𝑥  +  𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) ) ) ) ) | 
						
							| 31 | 14 30 | raleqbidv | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  ( ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ↔  ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ·  ( 𝑦  +  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  +  ( 𝑥  ·  𝑧 ) )  ∧  ( ( 𝑥  +  𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) ) ) ) ) | 
						
							| 32 | 14 31 | raleqbidv | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  ( ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ·  ( 𝑦  +  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  +  ( 𝑥  ·  𝑧 ) )  ∧  ( ( 𝑥  +  𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) ) ) ) ) | 
						
							| 33 |  | simpr | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  𝑛  =   0  ) | 
						
							| 34 | 15 33 16 | oveq123d | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  ( 𝑛 𝑡 𝑥 )  =  (  0   ·  𝑥 ) ) | 
						
							| 35 | 34 33 | eqeq12d | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ↔  (  0   ·  𝑥 )  =   0  ) ) | 
						
							| 36 | 15 16 33 | oveq123d | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  ( 𝑥 𝑡 𝑛 )  =  ( 𝑥  ·   0  ) ) | 
						
							| 37 | 36 33 | eqeq12d | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  ( ( 𝑥 𝑡 𝑛 )  =  𝑛  ↔  ( 𝑥  ·   0  )  =   0  ) ) | 
						
							| 38 | 35 37 | anbi12d | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  ( ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 )  ↔  ( (  0   ·  𝑥 )  =   0   ∧  ( 𝑥  ·   0  )  =   0  ) ) ) | 
						
							| 39 | 32 38 | anbi12d | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  ( ( ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) )  ↔  ( ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ·  ( 𝑦  +  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  +  ( 𝑥  ·  𝑧 ) )  ∧  ( ( 𝑥  +  𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) ) )  ∧  ( (  0   ·  𝑥 )  =   0   ∧  ( 𝑥  ·   0  )  =   0  ) ) ) ) | 
						
							| 40 | 14 39 | raleqbidv | ⊢ ( ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  ∧  𝑛  =   0  )  →  ( ∀ 𝑥  ∈  𝑏 ( ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) )  ↔  ∀ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ·  ( 𝑦  +  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  +  ( 𝑥  ·  𝑧 ) )  ∧  ( ( 𝑥  +  𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) ) )  ∧  ( (  0   ·  𝑥 )  =   0   ∧  ( 𝑥  ·   0  )  =   0  ) ) ) ) | 
						
							| 41 | 13 40 | sbcied | ⊢ ( ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  ∧  𝑡  =   ·  )  →  ( [  0   /  𝑛 ] ∀ 𝑥  ∈  𝑏 ( ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) )  ↔  ∀ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ·  ( 𝑦  +  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  +  ( 𝑥  ·  𝑧 ) )  ∧  ( ( 𝑥  +  𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) ) )  ∧  ( (  0   ·  𝑥 )  =   0   ∧  ( 𝑥  ·   0  )  =   0  ) ) ) ) | 
						
							| 42 | 11 41 | sbcied | ⊢ ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  →  ( [  ·   /  𝑡 ] [  0   /  𝑛 ] ∀ 𝑥  ∈  𝑏 ( ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) )  ↔  ∀ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ·  ( 𝑦  +  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  +  ( 𝑥  ·  𝑧 ) )  ∧  ( ( 𝑥  +  𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) ) )  ∧  ( (  0   ·  𝑥 )  =   0   ∧  ( 𝑥  ·   0  )  =   0  ) ) ) ) | 
						
							| 43 | 8 9 42 | sbc2ie | ⊢ ( [ 𝐵  /  𝑏 ] [  +   /  𝑝 ] [  ·   /  𝑡 ] [  0   /  𝑛 ] ∀ 𝑥  ∈  𝑏 ( ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) )  ↔  ∀ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ·  ( 𝑦  +  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  +  ( 𝑥  ·  𝑧 ) )  ∧  ( ( 𝑥  +  𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) ) )  ∧  ( (  0   ·  𝑥 )  =   0   ∧  ( 𝑥  ·   0  )  =   0  ) ) ) | 
						
							| 44 | 7 43 | anbi12i | ⊢ ( ( ( mulGrp ‘ 𝑅 )  ∈  Mnd  ∧  [ 𝐵  /  𝑏 ] [  +   /  𝑝 ] [  ·   /  𝑡 ] [  0   /  𝑛 ] ∀ 𝑥  ∈  𝑏 ( ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) ) )  ↔  ( 𝐺  ∈  Mnd  ∧  ∀ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ·  ( 𝑦  +  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  +  ( 𝑥  ·  𝑧 ) )  ∧  ( ( 𝑥  +  𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) ) )  ∧  ( (  0   ·  𝑥 )  =   0   ∧  ( 𝑥  ·   0  )  =   0  ) ) ) ) | 
						
							| 45 | 44 | anbi2i | ⊢ ( ( 𝑅  ∈  CMnd  ∧  ( ( mulGrp ‘ 𝑅 )  ∈  Mnd  ∧  [ 𝐵  /  𝑏 ] [  +   /  𝑝 ] [  ·   /  𝑡 ] [  0   /  𝑛 ] ∀ 𝑥  ∈  𝑏 ( ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) ) ) )  ↔  ( 𝑅  ∈  CMnd  ∧  ( 𝐺  ∈  Mnd  ∧  ∀ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ·  ( 𝑦  +  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  +  ( 𝑥  ·  𝑧 ) )  ∧  ( ( 𝑥  +  𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) ) )  ∧  ( (  0   ·  𝑥 )  =   0   ∧  ( 𝑥  ·   0  )  =   0  ) ) ) ) ) | 
						
							| 46 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( mulGrp ‘ 𝑟 )  =  ( mulGrp ‘ 𝑅 ) ) | 
						
							| 47 | 46 | eleq1d | ⊢ ( 𝑟  =  𝑅  →  ( ( mulGrp ‘ 𝑟 )  ∈  Mnd  ↔  ( mulGrp ‘ 𝑅 )  ∈  Mnd ) ) | 
						
							| 48 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( Base ‘ 𝑟 )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 49 | 48 1 | eqtr4di | ⊢ ( 𝑟  =  𝑅  →  ( Base ‘ 𝑟 )  =  𝐵 ) | 
						
							| 50 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( +g ‘ 𝑟 )  =  ( +g ‘ 𝑅 ) ) | 
						
							| 51 | 50 3 | eqtr4di | ⊢ ( 𝑟  =  𝑅  →  ( +g ‘ 𝑟 )  =   +  ) | 
						
							| 52 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( .r ‘ 𝑟 )  =  ( .r ‘ 𝑅 ) ) | 
						
							| 53 | 52 4 | eqtr4di | ⊢ ( 𝑟  =  𝑅  →  ( .r ‘ 𝑟 )  =   ·  ) | 
						
							| 54 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( 0g ‘ 𝑟 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 55 | 54 5 | eqtr4di | ⊢ ( 𝑟  =  𝑅  →  ( 0g ‘ 𝑟 )  =   0  ) | 
						
							| 56 | 55 | sbceq1d | ⊢ ( 𝑟  =  𝑅  →  ( [ ( 0g ‘ 𝑟 )  /  𝑛 ] ∀ 𝑥  ∈  𝑏 ( ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) )  ↔  [  0   /  𝑛 ] ∀ 𝑥  ∈  𝑏 ( ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) ) ) ) | 
						
							| 57 | 53 56 | sbceqbid | ⊢ ( 𝑟  =  𝑅  →  ( [ ( .r ‘ 𝑟 )  /  𝑡 ] [ ( 0g ‘ 𝑟 )  /  𝑛 ] ∀ 𝑥  ∈  𝑏 ( ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) )  ↔  [  ·   /  𝑡 ] [  0   /  𝑛 ] ∀ 𝑥  ∈  𝑏 ( ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) ) ) ) | 
						
							| 58 | 51 57 | sbceqbid | ⊢ ( 𝑟  =  𝑅  →  ( [ ( +g ‘ 𝑟 )  /  𝑝 ] [ ( .r ‘ 𝑟 )  /  𝑡 ] [ ( 0g ‘ 𝑟 )  /  𝑛 ] ∀ 𝑥  ∈  𝑏 ( ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) )  ↔  [  +   /  𝑝 ] [  ·   /  𝑡 ] [  0   /  𝑛 ] ∀ 𝑥  ∈  𝑏 ( ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) ) ) ) | 
						
							| 59 | 49 58 | sbceqbid | ⊢ ( 𝑟  =  𝑅  →  ( [ ( Base ‘ 𝑟 )  /  𝑏 ] [ ( +g ‘ 𝑟 )  /  𝑝 ] [ ( .r ‘ 𝑟 )  /  𝑡 ] [ ( 0g ‘ 𝑟 )  /  𝑛 ] ∀ 𝑥  ∈  𝑏 ( ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) )  ↔  [ 𝐵  /  𝑏 ] [  +   /  𝑝 ] [  ·   /  𝑡 ] [  0   /  𝑛 ] ∀ 𝑥  ∈  𝑏 ( ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) ) ) ) | 
						
							| 60 | 47 59 | anbi12d | ⊢ ( 𝑟  =  𝑅  →  ( ( ( mulGrp ‘ 𝑟 )  ∈  Mnd  ∧  [ ( Base ‘ 𝑟 )  /  𝑏 ] [ ( +g ‘ 𝑟 )  /  𝑝 ] [ ( .r ‘ 𝑟 )  /  𝑡 ] [ ( 0g ‘ 𝑟 )  /  𝑛 ] ∀ 𝑥  ∈  𝑏 ( ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) ) )  ↔  ( ( mulGrp ‘ 𝑅 )  ∈  Mnd  ∧  [ 𝐵  /  𝑏 ] [  +   /  𝑝 ] [  ·   /  𝑡 ] [  0   /  𝑛 ] ∀ 𝑥  ∈  𝑏 ( ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) ) ) ) ) | 
						
							| 61 |  | df-srg | ⊢ SRing  =  { 𝑟  ∈  CMnd  ∣  ( ( mulGrp ‘ 𝑟 )  ∈  Mnd  ∧  [ ( Base ‘ 𝑟 )  /  𝑏 ] [ ( +g ‘ 𝑟 )  /  𝑝 ] [ ( .r ‘ 𝑟 )  /  𝑡 ] [ ( 0g ‘ 𝑟 )  /  𝑛 ] ∀ 𝑥  ∈  𝑏 ( ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) ) ) } | 
						
							| 62 | 60 61 | elrab2 | ⊢ ( 𝑅  ∈  SRing  ↔  ( 𝑅  ∈  CMnd  ∧  ( ( mulGrp ‘ 𝑅 )  ∈  Mnd  ∧  [ 𝐵  /  𝑏 ] [  +   /  𝑝 ] [  ·   /  𝑡 ] [  0   /  𝑛 ] ∀ 𝑥  ∈  𝑏 ( ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  ∧  ( ( 𝑛 𝑡 𝑥 )  =  𝑛  ∧  ( 𝑥 𝑡 𝑛 )  =  𝑛 ) ) ) ) ) | 
						
							| 63 |  | 3anass | ⊢ ( ( 𝑅  ∈  CMnd  ∧  𝐺  ∈  Mnd  ∧  ∀ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ·  ( 𝑦  +  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  +  ( 𝑥  ·  𝑧 ) )  ∧  ( ( 𝑥  +  𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) ) )  ∧  ( (  0   ·  𝑥 )  =   0   ∧  ( 𝑥  ·   0  )  =   0  ) ) )  ↔  ( 𝑅  ∈  CMnd  ∧  ( 𝐺  ∈  Mnd  ∧  ∀ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ·  ( 𝑦  +  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  +  ( 𝑥  ·  𝑧 ) )  ∧  ( ( 𝑥  +  𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) ) )  ∧  ( (  0   ·  𝑥 )  =   0   ∧  ( 𝑥  ·   0  )  =   0  ) ) ) ) ) | 
						
							| 64 | 45 62 63 | 3bitr4i | ⊢ ( 𝑅  ∈  SRing  ↔  ( 𝑅  ∈  CMnd  ∧  𝐺  ∈  Mnd  ∧  ∀ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ·  ( 𝑦  +  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  +  ( 𝑥  ·  𝑧 ) )  ∧  ( ( 𝑥  +  𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) ) )  ∧  ( (  0   ·  𝑥 )  =   0   ∧  ( 𝑥  ·   0  )  =   0  ) ) ) ) |