| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srgidm.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | srgidm.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | srgidm.u | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 4 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 5 | 4 1 | mgpbas | ⊢ 𝐵  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 6 | 4 3 | ringidval | ⊢  1   =  ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 7 | 4 2 | mgpplusg | ⊢  ·   =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 8 | 1 2 | srgideu | ⊢ ( 𝑅  ∈  SRing  →  ∃! 𝑦  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑦  ·  𝑥 )  =  𝑥  ∧  ( 𝑥  ·  𝑦 )  =  𝑥 ) ) | 
						
							| 9 |  | reurex | ⊢ ( ∃! 𝑦  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑦  ·  𝑥 )  =  𝑥  ∧  ( 𝑥  ·  𝑦 )  =  𝑥 )  →  ∃ 𝑦  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑦  ·  𝑥 )  =  𝑥  ∧  ( 𝑥  ·  𝑦 )  =  𝑥 ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝑅  ∈  SRing  →  ∃ 𝑦  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑦  ·  𝑥 )  =  𝑥  ∧  ( 𝑥  ·  𝑦 )  =  𝑥 ) ) | 
						
							| 11 | 5 6 7 10 | ismgmid | ⊢ ( 𝑅  ∈  SRing  →  ( ( 𝐼  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝐼  ·  𝑥 )  =  𝑥  ∧  ( 𝑥  ·  𝐼 )  =  𝑥 ) )  ↔   1   =  𝐼 ) ) |