| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issrng.o | ⊢ 𝑂  =  ( oppr ‘ 𝑅 ) | 
						
							| 2 |  | issrng.i | ⊢  ∗   =  ( *rf ‘ 𝑅 ) | 
						
							| 3 |  | df-srng | ⊢ *-Ring  =  { 𝑟  ∣  [ ( *rf ‘ 𝑟 )  /  𝑖 ] ( 𝑖  ∈  ( 𝑟  RingHom  ( oppr ‘ 𝑟 ) )  ∧  𝑖  =  ◡ 𝑖 ) } | 
						
							| 4 | 3 | eleq2i | ⊢ ( 𝑅  ∈  *-Ring  ↔  𝑅  ∈  { 𝑟  ∣  [ ( *rf ‘ 𝑟 )  /  𝑖 ] ( 𝑖  ∈  ( 𝑟  RingHom  ( oppr ‘ 𝑟 ) )  ∧  𝑖  =  ◡ 𝑖 ) } ) | 
						
							| 5 |  | rhmrcl1 | ⊢ (  ∗   ∈  ( 𝑅  RingHom  𝑂 )  →  𝑅  ∈  Ring ) | 
						
							| 6 | 5 | adantr | ⊢ ( (  ∗   ∈  ( 𝑅  RingHom  𝑂 )  ∧   ∗   =  ◡  ∗  )  →  𝑅  ∈  Ring ) | 
						
							| 7 |  | fvexd | ⊢ ( 𝑟  =  𝑅  →  ( *rf ‘ 𝑟 )  ∈  V ) | 
						
							| 8 |  | id | ⊢ ( 𝑖  =  ( *rf ‘ 𝑟 )  →  𝑖  =  ( *rf ‘ 𝑟 ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( *rf ‘ 𝑟 )  =  ( *rf ‘ 𝑅 ) ) | 
						
							| 10 | 9 2 | eqtr4di | ⊢ ( 𝑟  =  𝑅  →  ( *rf ‘ 𝑟 )  =   ∗  ) | 
						
							| 11 | 8 10 | sylan9eqr | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑖  =  ( *rf ‘ 𝑟 ) )  →  𝑖  =   ∗  ) | 
						
							| 12 |  | simpl | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑖  =  ( *rf ‘ 𝑟 ) )  →  𝑟  =  𝑅 ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑖  =  ( *rf ‘ 𝑟 ) )  →  ( oppr ‘ 𝑟 )  =  ( oppr ‘ 𝑅 ) ) | 
						
							| 14 | 13 1 | eqtr4di | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑖  =  ( *rf ‘ 𝑟 ) )  →  ( oppr ‘ 𝑟 )  =  𝑂 ) | 
						
							| 15 | 12 14 | oveq12d | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑖  =  ( *rf ‘ 𝑟 ) )  →  ( 𝑟  RingHom  ( oppr ‘ 𝑟 ) )  =  ( 𝑅  RingHom  𝑂 ) ) | 
						
							| 16 | 11 15 | eleq12d | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑖  =  ( *rf ‘ 𝑟 ) )  →  ( 𝑖  ∈  ( 𝑟  RingHom  ( oppr ‘ 𝑟 ) )  ↔   ∗   ∈  ( 𝑅  RingHom  𝑂 ) ) ) | 
						
							| 17 | 11 | cnveqd | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑖  =  ( *rf ‘ 𝑟 ) )  →  ◡ 𝑖  =  ◡  ∗  ) | 
						
							| 18 | 11 17 | eqeq12d | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑖  =  ( *rf ‘ 𝑟 ) )  →  ( 𝑖  =  ◡ 𝑖  ↔   ∗   =  ◡  ∗  ) ) | 
						
							| 19 | 16 18 | anbi12d | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑖  =  ( *rf ‘ 𝑟 ) )  →  ( ( 𝑖  ∈  ( 𝑟  RingHom  ( oppr ‘ 𝑟 ) )  ∧  𝑖  =  ◡ 𝑖 )  ↔  (  ∗   ∈  ( 𝑅  RingHom  𝑂 )  ∧   ∗   =  ◡  ∗  ) ) ) | 
						
							| 20 | 7 19 | sbcied | ⊢ ( 𝑟  =  𝑅  →  ( [ ( *rf ‘ 𝑟 )  /  𝑖 ] ( 𝑖  ∈  ( 𝑟  RingHom  ( oppr ‘ 𝑟 ) )  ∧  𝑖  =  ◡ 𝑖 )  ↔  (  ∗   ∈  ( 𝑅  RingHom  𝑂 )  ∧   ∗   =  ◡  ∗  ) ) ) | 
						
							| 21 | 6 20 | elab3 | ⊢ ( 𝑅  ∈  { 𝑟  ∣  [ ( *rf ‘ 𝑟 )  /  𝑖 ] ( 𝑖  ∈  ( 𝑟  RingHom  ( oppr ‘ 𝑟 ) )  ∧  𝑖  =  ◡ 𝑖 ) }  ↔  (  ∗   ∈  ( 𝑅  RingHom  𝑂 )  ∧   ∗   =  ◡  ∗  ) ) | 
						
							| 22 | 4 21 | bitri | ⊢ ( 𝑅  ∈  *-Ring  ↔  (  ∗   ∈  ( 𝑅  RingHom  𝑂 )  ∧   ∗   =  ◡  ∗  ) ) |