Step |
Hyp |
Ref |
Expression |
1 |
|
issrng.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
2 |
|
issrng.i |
⊢ ∗ = ( *rf ‘ 𝑅 ) |
3 |
|
df-srng |
⊢ *-Ring = { 𝑟 ∣ [ ( *rf ‘ 𝑟 ) / 𝑖 ] ( 𝑖 ∈ ( 𝑟 RingHom ( oppr ‘ 𝑟 ) ) ∧ 𝑖 = ◡ 𝑖 ) } |
4 |
3
|
eleq2i |
⊢ ( 𝑅 ∈ *-Ring ↔ 𝑅 ∈ { 𝑟 ∣ [ ( *rf ‘ 𝑟 ) / 𝑖 ] ( 𝑖 ∈ ( 𝑟 RingHom ( oppr ‘ 𝑟 ) ) ∧ 𝑖 = ◡ 𝑖 ) } ) |
5 |
|
rhmrcl1 |
⊢ ( ∗ ∈ ( 𝑅 RingHom 𝑂 ) → 𝑅 ∈ Ring ) |
6 |
5
|
adantr |
⊢ ( ( ∗ ∈ ( 𝑅 RingHom 𝑂 ) ∧ ∗ = ◡ ∗ ) → 𝑅 ∈ Ring ) |
7 |
|
fvexd |
⊢ ( 𝑟 = 𝑅 → ( *rf ‘ 𝑟 ) ∈ V ) |
8 |
|
id |
⊢ ( 𝑖 = ( *rf ‘ 𝑟 ) → 𝑖 = ( *rf ‘ 𝑟 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( *rf ‘ 𝑟 ) = ( *rf ‘ 𝑅 ) ) |
10 |
9 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( *rf ‘ 𝑟 ) = ∗ ) |
11 |
8 10
|
sylan9eqr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = ( *rf ‘ 𝑟 ) ) → 𝑖 = ∗ ) |
12 |
|
simpl |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = ( *rf ‘ 𝑟 ) ) → 𝑟 = 𝑅 ) |
13 |
12
|
fveq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = ( *rf ‘ 𝑟 ) ) → ( oppr ‘ 𝑟 ) = ( oppr ‘ 𝑅 ) ) |
14 |
13 1
|
eqtr4di |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = ( *rf ‘ 𝑟 ) ) → ( oppr ‘ 𝑟 ) = 𝑂 ) |
15 |
12 14
|
oveq12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = ( *rf ‘ 𝑟 ) ) → ( 𝑟 RingHom ( oppr ‘ 𝑟 ) ) = ( 𝑅 RingHom 𝑂 ) ) |
16 |
11 15
|
eleq12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = ( *rf ‘ 𝑟 ) ) → ( 𝑖 ∈ ( 𝑟 RingHom ( oppr ‘ 𝑟 ) ) ↔ ∗ ∈ ( 𝑅 RingHom 𝑂 ) ) ) |
17 |
11
|
cnveqd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = ( *rf ‘ 𝑟 ) ) → ◡ 𝑖 = ◡ ∗ ) |
18 |
11 17
|
eqeq12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = ( *rf ‘ 𝑟 ) ) → ( 𝑖 = ◡ 𝑖 ↔ ∗ = ◡ ∗ ) ) |
19 |
16 18
|
anbi12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = ( *rf ‘ 𝑟 ) ) → ( ( 𝑖 ∈ ( 𝑟 RingHom ( oppr ‘ 𝑟 ) ) ∧ 𝑖 = ◡ 𝑖 ) ↔ ( ∗ ∈ ( 𝑅 RingHom 𝑂 ) ∧ ∗ = ◡ ∗ ) ) ) |
20 |
7 19
|
sbcied |
⊢ ( 𝑟 = 𝑅 → ( [ ( *rf ‘ 𝑟 ) / 𝑖 ] ( 𝑖 ∈ ( 𝑟 RingHom ( oppr ‘ 𝑟 ) ) ∧ 𝑖 = ◡ 𝑖 ) ↔ ( ∗ ∈ ( 𝑅 RingHom 𝑂 ) ∧ ∗ = ◡ ∗ ) ) ) |
21 |
6 20
|
elab3 |
⊢ ( 𝑅 ∈ { 𝑟 ∣ [ ( *rf ‘ 𝑟 ) / 𝑖 ] ( 𝑖 ∈ ( 𝑟 RingHom ( oppr ‘ 𝑟 ) ) ∧ 𝑖 = ◡ 𝑖 ) } ↔ ( ∗ ∈ ( 𝑅 RingHom 𝑂 ) ∧ ∗ = ◡ ∗ ) ) |
22 |
4 21
|
bitri |
⊢ ( 𝑅 ∈ *-Ring ↔ ( ∗ ∈ ( 𝑅 RingHom 𝑂 ) ∧ ∗ = ◡ ∗ ) ) |