Step |
Hyp |
Ref |
Expression |
1 |
|
issrngd.k |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ 𝑅 ) ) |
2 |
|
issrngd.p |
⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) ) |
3 |
|
issrngd.t |
⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) |
4 |
|
issrngd.c |
⊢ ( 𝜑 → ∗ = ( *𝑟 ‘ 𝑅 ) ) |
5 |
|
issrngd.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
|
issrngd.cl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ∗ ‘ 𝑥 ) ∈ 𝐾 ) |
7 |
|
issrngd.dp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) → ( ∗ ‘ ( 𝑥 + 𝑦 ) ) = ( ( ∗ ‘ 𝑥 ) + ( ∗ ‘ 𝑦 ) ) ) |
8 |
|
issrngd.dt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) → ( ∗ ‘ ( 𝑥 · 𝑦 ) ) = ( ( ∗ ‘ 𝑦 ) · ( ∗ ‘ 𝑥 ) ) ) |
9 |
|
issrngd.id |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ∗ ‘ ( ∗ ‘ 𝑥 ) ) = 𝑥 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
12 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
13 |
12 11
|
oppr1 |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ ( oppr ‘ 𝑅 ) ) |
14 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
15 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) |
16 |
12
|
opprring |
⊢ ( 𝑅 ∈ Ring → ( oppr ‘ 𝑅 ) ∈ Ring ) |
17 |
5 16
|
syl |
⊢ ( 𝜑 → ( oppr ‘ 𝑅 ) ∈ Ring ) |
18 |
|
id |
⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → 𝑥 = ( 1r ‘ 𝑅 ) ) |
19 |
|
fveq2 |
⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
21 |
18 20
|
eqeq12d |
⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ↔ ( 1r ‘ 𝑅 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) ) |
22 |
9
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐾 → ( ∗ ‘ ( ∗ ‘ 𝑥 ) ) = 𝑥 ) ) |
23 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐾 ↔ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) |
24 |
4
|
fveq1d |
⊢ ( 𝜑 → ( ∗ ‘ 𝑥 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) |
25 |
4 24
|
fveq12d |
⊢ ( 𝜑 → ( ∗ ‘ ( ∗ ‘ 𝑥 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
26 |
25
|
eqeq1d |
⊢ ( 𝜑 → ( ( ∗ ‘ ( ∗ ‘ 𝑥 ) ) = 𝑥 ↔ ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
27 |
22 23 26
|
3imtr3d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑅 ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) = 𝑥 ) ) |
28 |
27
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) = 𝑥 ) |
29 |
28
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
30 |
29
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
31 |
10 11
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
32 |
5 31
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
33 |
21 30 32
|
rspcdva |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
34 |
33
|
oveq1d |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
35 |
19
|
eleq1d |
⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ↔ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) ) |
36 |
6
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐾 → ( ∗ ‘ 𝑥 ) ∈ 𝐾 ) ) |
37 |
24 1
|
eleq12d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑥 ) ∈ 𝐾 ↔ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) ) |
38 |
36 23 37
|
3imtr3d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑅 ) → ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) ) |
39 |
38
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
40 |
35 39 32
|
rspcdva |
⊢ ( 𝜑 → ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
41 |
8
|
3expib |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) → ( ∗ ‘ ( 𝑥 · 𝑦 ) ) = ( ( ∗ ‘ 𝑦 ) · ( ∗ ‘ 𝑥 ) ) ) ) |
42 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐾 ↔ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) |
43 |
23 42
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) ) |
44 |
3
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 · 𝑦 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) |
45 |
4 44
|
fveq12d |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑥 · 𝑦 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
46 |
4
|
fveq1d |
⊢ ( 𝜑 → ( ∗ ‘ 𝑦 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) |
47 |
3 46 24
|
oveq123d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑦 ) · ( ∗ ‘ 𝑥 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
48 |
45 47
|
eqeq12d |
⊢ ( 𝜑 → ( ( ∗ ‘ ( 𝑥 · 𝑦 ) ) = ( ( ∗ ‘ 𝑦 ) · ( ∗ ‘ 𝑥 ) ) ↔ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) ) |
49 |
41 43 48
|
3imtr3d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) ) |
50 |
49
|
ralrimivv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
51 |
|
fvoveq1 |
⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
52 |
19
|
oveq2d |
⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
53 |
51 52
|
eqeq12d |
⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ↔ ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) ) |
54 |
|
oveq2 |
⊢ ( 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
55 |
54
|
fveq2d |
⊢ ( 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) ) |
56 |
|
fveq2 |
⊢ ( 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
57 |
56
|
oveq1d |
⊢ ( 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) → ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
58 |
55 57
|
eqeq12d |
⊢ ( 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) → ( ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ↔ ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) ) |
59 |
53 58
|
rspc2va |
⊢ ( ( ( ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
60 |
32 40 50 59
|
syl21anc |
⊢ ( 𝜑 → ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
61 |
34 60
|
eqtr4d |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) ) |
62 |
10 14 11
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) |
63 |
5 40 62
|
syl2anc |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) |
64 |
63
|
fveq2d |
⊢ ( 𝜑 → ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
65 |
61 63 64
|
3eqtr3d |
⊢ ( 𝜑 → ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
66 |
|
eqid |
⊢ ( *𝑟 ‘ 𝑅 ) = ( *𝑟 ‘ 𝑅 ) |
67 |
|
eqid |
⊢ ( *rf ‘ 𝑅 ) = ( *rf ‘ 𝑅 ) |
68 |
10 66 67
|
stafval |
⊢ ( ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) → ( ( *rf ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) |
69 |
32 68
|
syl |
⊢ ( 𝜑 → ( ( *rf ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) |
70 |
65 69 33
|
3eqtr4d |
⊢ ( 𝜑 → ( ( *rf ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
71 |
49
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
72 |
10 14 12 15
|
opprmul |
⊢ ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) |
73 |
71 72
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
74 |
10 14
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
75 |
74
|
3expb |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
76 |
5 75
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
77 |
10 66 67
|
stafval |
⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) → ( ( *rf ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
78 |
76 77
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( *rf ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) ) |
79 |
10 66 67
|
stafval |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) → ( ( *rf ‘ 𝑅 ) ‘ 𝑥 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) |
80 |
10 66 67
|
stafval |
⊢ ( 𝑦 ∈ ( Base ‘ 𝑅 ) → ( ( *rf ‘ 𝑅 ) ‘ 𝑦 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) |
81 |
79 80
|
oveqan12d |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( *rf ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) ( ( *rf ‘ 𝑅 ) ‘ 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
82 |
81
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( *rf ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) ( ( *rf ‘ 𝑅 ) ‘ 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
83 |
73 78 82
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( *rf ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *rf ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) ( ( *rf ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
84 |
12 10
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
85 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
86 |
12 85
|
oppradd |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ ( oppr ‘ 𝑅 ) ) |
87 |
38
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
88 |
10 66 67
|
staffval |
⊢ ( *rf ‘ 𝑅 ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) |
89 |
87 88
|
fmptd |
⊢ ( 𝜑 → ( *rf ‘ 𝑅 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
90 |
7
|
3expib |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) → ( ∗ ‘ ( 𝑥 + 𝑦 ) ) = ( ( ∗ ‘ 𝑥 ) + ( ∗ ‘ 𝑦 ) ) ) ) |
91 |
2
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) |
92 |
4 91
|
fveq12d |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑥 + 𝑦 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) |
93 |
2 24 46
|
oveq123d |
⊢ ( 𝜑 → ( ( ∗ ‘ 𝑥 ) + ( ∗ ‘ 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
94 |
92 93
|
eqeq12d |
⊢ ( 𝜑 → ( ( ∗ ‘ ( 𝑥 + 𝑦 ) ) = ( ( ∗ ‘ 𝑥 ) + ( ∗ ‘ 𝑦 ) ) ↔ ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) ) |
95 |
90 43 94
|
3imtr3d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) ) |
96 |
95
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
97 |
10 85
|
ringacl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
98 |
97
|
3expb |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
99 |
5 98
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
100 |
10 66 67
|
stafval |
⊢ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) → ( ( *rf ‘ 𝑅 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) |
101 |
99 100
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( *rf ‘ 𝑅 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) |
102 |
79 80
|
oveqan12d |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( *rf ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( *rf ‘ 𝑅 ) ‘ 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
103 |
102
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( *rf ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( *rf ‘ 𝑅 ) ‘ 𝑦 ) ) = ( ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
104 |
96 101 103
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( *rf ‘ 𝑅 ) ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( ( *rf ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( *rf ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
105 |
10 11 13 14 15 5 17 70 83 84 85 86 89 104
|
isrhmd |
⊢ ( 𝜑 → ( *rf ‘ 𝑅 ) ∈ ( 𝑅 RingHom ( oppr ‘ 𝑅 ) ) ) |
106 |
10 66 67
|
staffval |
⊢ ( *rf ‘ 𝑅 ) = ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) |
107 |
106
|
fmpt |
⊢ ( ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ↔ ( *rf ‘ 𝑅 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
108 |
89 107
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
109 |
108
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
110 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
111 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) |
112 |
111
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
113 |
110 112
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ↔ 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) ) |
114 |
113
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
115 |
30 114
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
116 |
115
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
117 |
|
fveq2 |
⊢ ( 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) → ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
118 |
117
|
eqeq2d |
⊢ ( 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) → ( 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ↔ 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) ) |
119 |
116 118
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) → 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
120 |
29
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
121 |
|
fveq2 |
⊢ ( 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) → ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
122 |
121
|
eqeq2d |
⊢ ( 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) → ( 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ↔ 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) ) |
123 |
120 122
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) → 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
124 |
119 123
|
impbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ↔ 𝑦 = ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑥 ) ) ) |
125 |
88 87 109 124
|
f1ocnv2d |
⊢ ( 𝜑 → ( ( *rf ‘ 𝑅 ) : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑅 ) ∧ ◡ ( *rf ‘ 𝑅 ) = ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) ) |
126 |
125
|
simprd |
⊢ ( 𝜑 → ◡ ( *rf ‘ 𝑅 ) = ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( *𝑟 ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
127 |
106 126
|
eqtr4id |
⊢ ( 𝜑 → ( *rf ‘ 𝑅 ) = ◡ ( *rf ‘ 𝑅 ) ) |
128 |
12 67
|
issrng |
⊢ ( 𝑅 ∈ *-Ring ↔ ( ( *rf ‘ 𝑅 ) ∈ ( 𝑅 RingHom ( oppr ‘ 𝑅 ) ) ∧ ( *rf ‘ 𝑅 ) = ◡ ( *rf ‘ 𝑅 ) ) ) |
129 |
105 127 128
|
sylanbrc |
⊢ ( 𝜑 → 𝑅 ∈ *-Ring ) |