Metamath Proof Explorer


Theorem issrngd

Description: Properties that determine a star ring. (Contributed by Mario Carneiro, 18-Nov-2013) (Revised by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses issrngd.k ( 𝜑𝐾 = ( Base ‘ 𝑅 ) )
issrngd.p ( 𝜑+ = ( +g𝑅 ) )
issrngd.t ( 𝜑· = ( .r𝑅 ) )
issrngd.c ( 𝜑 = ( *𝑟𝑅 ) )
issrngd.r ( 𝜑𝑅 ∈ Ring )
issrngd.cl ( ( 𝜑𝑥𝐾 ) → ( 𝑥 ) ∈ 𝐾 )
issrngd.dp ( ( 𝜑𝑥𝐾𝑦𝐾 ) → ( ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑥 ) + ( 𝑦 ) ) )
issrngd.dt ( ( 𝜑𝑥𝐾𝑦𝐾 ) → ( ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑦 ) · ( 𝑥 ) ) )
issrngd.id ( ( 𝜑𝑥𝐾 ) → ( ‘ ( 𝑥 ) ) = 𝑥 )
Assertion issrngd ( 𝜑𝑅 ∈ *-Ring )

Proof

Step Hyp Ref Expression
1 issrngd.k ( 𝜑𝐾 = ( Base ‘ 𝑅 ) )
2 issrngd.p ( 𝜑+ = ( +g𝑅 ) )
3 issrngd.t ( 𝜑· = ( .r𝑅 ) )
4 issrngd.c ( 𝜑 = ( *𝑟𝑅 ) )
5 issrngd.r ( 𝜑𝑅 ∈ Ring )
6 issrngd.cl ( ( 𝜑𝑥𝐾 ) → ( 𝑥 ) ∈ 𝐾 )
7 issrngd.dp ( ( 𝜑𝑥𝐾𝑦𝐾 ) → ( ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑥 ) + ( 𝑦 ) ) )
8 issrngd.dt ( ( 𝜑𝑥𝐾𝑦𝐾 ) → ( ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑦 ) · ( 𝑥 ) ) )
9 issrngd.id ( ( 𝜑𝑥𝐾 ) → ( ‘ ( 𝑥 ) ) = 𝑥 )
10 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
11 eqid ( 1r𝑅 ) = ( 1r𝑅 )
12 eqid ( oppr𝑅 ) = ( oppr𝑅 )
13 12 11 oppr1 ( 1r𝑅 ) = ( 1r ‘ ( oppr𝑅 ) )
14 eqid ( .r𝑅 ) = ( .r𝑅 )
15 eqid ( .r ‘ ( oppr𝑅 ) ) = ( .r ‘ ( oppr𝑅 ) )
16 12 opprring ( 𝑅 ∈ Ring → ( oppr𝑅 ) ∈ Ring )
17 5 16 syl ( 𝜑 → ( oppr𝑅 ) ∈ Ring )
18 id ( 𝑥 = ( 1r𝑅 ) → 𝑥 = ( 1r𝑅 ) )
19 fveq2 ( 𝑥 = ( 1r𝑅 ) → ( ( *𝑟𝑅 ) ‘ 𝑥 ) = ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) )
20 19 fveq2d ( 𝑥 = ( 1r𝑅 ) → ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) )
21 18 20 eqeq12d ( 𝑥 = ( 1r𝑅 ) → ( 𝑥 = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) ↔ ( 1r𝑅 ) = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) ) )
22 9 ex ( 𝜑 → ( 𝑥𝐾 → ( ‘ ( 𝑥 ) ) = 𝑥 ) )
23 1 eleq2d ( 𝜑 → ( 𝑥𝐾𝑥 ∈ ( Base ‘ 𝑅 ) ) )
24 4 fveq1d ( 𝜑 → ( 𝑥 ) = ( ( *𝑟𝑅 ) ‘ 𝑥 ) )
25 4 24 fveq12d ( 𝜑 → ( ‘ ( 𝑥 ) ) = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) )
26 25 eqeq1d ( 𝜑 → ( ( ‘ ( 𝑥 ) ) = 𝑥 ↔ ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) = 𝑥 ) )
27 22 23 26 3imtr3d ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑅 ) → ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) = 𝑥 ) )
28 27 imp ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) = 𝑥 )
29 28 eqcomd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑥 = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) )
30 29 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝑥 = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) )
31 10 11 ringidcl ( 𝑅 ∈ Ring → ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) )
32 5 31 syl ( 𝜑 → ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) )
33 21 30 32 rspcdva ( 𝜑 → ( 1r𝑅 ) = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) )
34 33 oveq1d ( 𝜑 → ( ( 1r𝑅 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) = ( ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) )
35 19 eleq1d ( 𝑥 = ( 1r𝑅 ) → ( ( ( *𝑟𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ↔ ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) )
36 6 ex ( 𝜑 → ( 𝑥𝐾 → ( 𝑥 ) ∈ 𝐾 ) )
37 24 1 eleq12d ( 𝜑 → ( ( 𝑥 ) ∈ 𝐾 ↔ ( ( *𝑟𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) )
38 36 23 37 3imtr3d ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑅 ) → ( ( *𝑟𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) )
39 38 ralrimiv ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( *𝑟𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) )
40 35 39 32 rspcdva ( 𝜑 → ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ∈ ( Base ‘ 𝑅 ) )
41 8 3expib ( 𝜑 → ( ( 𝑥𝐾𝑦𝐾 ) → ( ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑦 ) · ( 𝑥 ) ) ) )
42 1 eleq2d ( 𝜑 → ( 𝑦𝐾𝑦 ∈ ( Base ‘ 𝑅 ) ) )
43 23 42 anbi12d ( 𝜑 → ( ( 𝑥𝐾𝑦𝐾 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) )
44 3 oveqd ( 𝜑 → ( 𝑥 · 𝑦 ) = ( 𝑥 ( .r𝑅 ) 𝑦 ) )
45 4 44 fveq12d ( 𝜑 → ( ‘ ( 𝑥 · 𝑦 ) ) = ( ( *𝑟𝑅 ) ‘ ( 𝑥 ( .r𝑅 ) 𝑦 ) ) )
46 4 fveq1d ( 𝜑 → ( 𝑦 ) = ( ( *𝑟𝑅 ) ‘ 𝑦 ) )
47 3 46 24 oveq123d ( 𝜑 → ( ( 𝑦 ) · ( 𝑥 ) ) = ( ( ( *𝑟𝑅 ) ‘ 𝑦 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) )
48 45 47 eqeq12d ( 𝜑 → ( ( ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑦 ) · ( 𝑥 ) ) ↔ ( ( *𝑟𝑅 ) ‘ ( 𝑥 ( .r𝑅 ) 𝑦 ) ) = ( ( ( *𝑟𝑅 ) ‘ 𝑦 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) ) )
49 41 43 48 3imtr3d ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( *𝑟𝑅 ) ‘ ( 𝑥 ( .r𝑅 ) 𝑦 ) ) = ( ( ( *𝑟𝑅 ) ‘ 𝑦 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) ) )
50 49 ralrimivv ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 𝑥 ( .r𝑅 ) 𝑦 ) ) = ( ( ( *𝑟𝑅 ) ‘ 𝑦 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) )
51 fvoveq1 ( 𝑥 = ( 1r𝑅 ) → ( ( *𝑟𝑅 ) ‘ ( 𝑥 ( .r𝑅 ) 𝑦 ) ) = ( ( *𝑟𝑅 ) ‘ ( ( 1r𝑅 ) ( .r𝑅 ) 𝑦 ) ) )
52 19 oveq2d ( 𝑥 = ( 1r𝑅 ) → ( ( ( *𝑟𝑅 ) ‘ 𝑦 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) = ( ( ( *𝑟𝑅 ) ‘ 𝑦 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) )
53 51 52 eqeq12d ( 𝑥 = ( 1r𝑅 ) → ( ( ( *𝑟𝑅 ) ‘ ( 𝑥 ( .r𝑅 ) 𝑦 ) ) = ( ( ( *𝑟𝑅 ) ‘ 𝑦 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) ↔ ( ( *𝑟𝑅 ) ‘ ( ( 1r𝑅 ) ( .r𝑅 ) 𝑦 ) ) = ( ( ( *𝑟𝑅 ) ‘ 𝑦 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) ) )
54 oveq2 ( 𝑦 = ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) → ( ( 1r𝑅 ) ( .r𝑅 ) 𝑦 ) = ( ( 1r𝑅 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) )
55 54 fveq2d ( 𝑦 = ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) → ( ( *𝑟𝑅 ) ‘ ( ( 1r𝑅 ) ( .r𝑅 ) 𝑦 ) ) = ( ( *𝑟𝑅 ) ‘ ( ( 1r𝑅 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) ) )
56 fveq2 ( 𝑦 = ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) → ( ( *𝑟𝑅 ) ‘ 𝑦 ) = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) )
57 56 oveq1d ( 𝑦 = ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) → ( ( ( *𝑟𝑅 ) ‘ 𝑦 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) = ( ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) )
58 55 57 eqeq12d ( 𝑦 = ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) → ( ( ( *𝑟𝑅 ) ‘ ( ( 1r𝑅 ) ( .r𝑅 ) 𝑦 ) ) = ( ( ( *𝑟𝑅 ) ‘ 𝑦 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) ↔ ( ( *𝑟𝑅 ) ‘ ( ( 1r𝑅 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) ) = ( ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) ) )
59 53 58 rspc2va ( ( ( ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 𝑥 ( .r𝑅 ) 𝑦 ) ) = ( ( ( *𝑟𝑅 ) ‘ 𝑦 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) ) → ( ( *𝑟𝑅 ) ‘ ( ( 1r𝑅 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) ) = ( ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) )
60 32 40 50 59 syl21anc ( 𝜑 → ( ( *𝑟𝑅 ) ‘ ( ( 1r𝑅 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) ) = ( ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) )
61 34 60 eqtr4d ( 𝜑 → ( ( 1r𝑅 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) = ( ( *𝑟𝑅 ) ‘ ( ( 1r𝑅 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) ) )
62 10 14 11 ringlidm ( ( 𝑅 ∈ Ring ∧ ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r𝑅 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) = ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) )
63 5 40 62 syl2anc ( 𝜑 → ( ( 1r𝑅 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) = ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) )
64 63 fveq2d ( 𝜑 → ( ( *𝑟𝑅 ) ‘ ( ( 1r𝑅 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) ) = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) )
65 61 63 64 3eqtr3d ( 𝜑 → ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) ) )
66 eqid ( *𝑟𝑅 ) = ( *𝑟𝑅 )
67 eqid ( *rf𝑅 ) = ( *rf𝑅 )
68 10 66 67 stafval ( ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) → ( ( *rf𝑅 ) ‘ ( 1r𝑅 ) ) = ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) )
69 32 68 syl ( 𝜑 → ( ( *rf𝑅 ) ‘ ( 1r𝑅 ) ) = ( ( *𝑟𝑅 ) ‘ ( 1r𝑅 ) ) )
70 65 69 33 3eqtr4d ( 𝜑 → ( ( *rf𝑅 ) ‘ ( 1r𝑅 ) ) = ( 1r𝑅 ) )
71 49 imp ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( *𝑟𝑅 ) ‘ ( 𝑥 ( .r𝑅 ) 𝑦 ) ) = ( ( ( *𝑟𝑅 ) ‘ 𝑦 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) )
72 10 14 12 15 opprmul ( ( ( *𝑟𝑅 ) ‘ 𝑥 ) ( .r ‘ ( oppr𝑅 ) ) ( ( *𝑟𝑅 ) ‘ 𝑦 ) ) = ( ( ( *𝑟𝑅 ) ‘ 𝑦 ) ( .r𝑅 ) ( ( *𝑟𝑅 ) ‘ 𝑥 ) )
73 71 72 eqtr4di ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( *𝑟𝑅 ) ‘ ( 𝑥 ( .r𝑅 ) 𝑦 ) ) = ( ( ( *𝑟𝑅 ) ‘ 𝑥 ) ( .r ‘ ( oppr𝑅 ) ) ( ( *𝑟𝑅 ) ‘ 𝑦 ) ) )
74 10 14 ringcl ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) )
75 74 3expb ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) )
76 5 75 sylan ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) )
77 10 66 67 stafval ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) → ( ( *rf𝑅 ) ‘ ( 𝑥 ( .r𝑅 ) 𝑦 ) ) = ( ( *𝑟𝑅 ) ‘ ( 𝑥 ( .r𝑅 ) 𝑦 ) ) )
78 76 77 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( *rf𝑅 ) ‘ ( 𝑥 ( .r𝑅 ) 𝑦 ) ) = ( ( *𝑟𝑅 ) ‘ ( 𝑥 ( .r𝑅 ) 𝑦 ) ) )
79 10 66 67 stafval ( 𝑥 ∈ ( Base ‘ 𝑅 ) → ( ( *rf𝑅 ) ‘ 𝑥 ) = ( ( *𝑟𝑅 ) ‘ 𝑥 ) )
80 10 66 67 stafval ( 𝑦 ∈ ( Base ‘ 𝑅 ) → ( ( *rf𝑅 ) ‘ 𝑦 ) = ( ( *𝑟𝑅 ) ‘ 𝑦 ) )
81 79 80 oveqan12d ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( *rf𝑅 ) ‘ 𝑥 ) ( .r ‘ ( oppr𝑅 ) ) ( ( *rf𝑅 ) ‘ 𝑦 ) ) = ( ( ( *𝑟𝑅 ) ‘ 𝑥 ) ( .r ‘ ( oppr𝑅 ) ) ( ( *𝑟𝑅 ) ‘ 𝑦 ) ) )
82 81 adantl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( *rf𝑅 ) ‘ 𝑥 ) ( .r ‘ ( oppr𝑅 ) ) ( ( *rf𝑅 ) ‘ 𝑦 ) ) = ( ( ( *𝑟𝑅 ) ‘ 𝑥 ) ( .r ‘ ( oppr𝑅 ) ) ( ( *𝑟𝑅 ) ‘ 𝑦 ) ) )
83 73 78 82 3eqtr4d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( *rf𝑅 ) ‘ ( 𝑥 ( .r𝑅 ) 𝑦 ) ) = ( ( ( *rf𝑅 ) ‘ 𝑥 ) ( .r ‘ ( oppr𝑅 ) ) ( ( *rf𝑅 ) ‘ 𝑦 ) ) )
84 12 10 opprbas ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr𝑅 ) )
85 eqid ( +g𝑅 ) = ( +g𝑅 )
86 12 85 oppradd ( +g𝑅 ) = ( +g ‘ ( oppr𝑅 ) )
87 38 imp ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( *𝑟𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) )
88 10 66 67 staffval ( *rf𝑅 ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ ( ( *𝑟𝑅 ) ‘ 𝑥 ) )
89 87 88 fmptd ( 𝜑 → ( *rf𝑅 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) )
90 7 3expib ( 𝜑 → ( ( 𝑥𝐾𝑦𝐾 ) → ( ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑥 ) + ( 𝑦 ) ) ) )
91 2 oveqd ( 𝜑 → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g𝑅 ) 𝑦 ) )
92 4 91 fveq12d ( 𝜑 → ( ‘ ( 𝑥 + 𝑦 ) ) = ( ( *𝑟𝑅 ) ‘ ( 𝑥 ( +g𝑅 ) 𝑦 ) ) )
93 2 24 46 oveq123d ( 𝜑 → ( ( 𝑥 ) + ( 𝑦 ) ) = ( ( ( *𝑟𝑅 ) ‘ 𝑥 ) ( +g𝑅 ) ( ( *𝑟𝑅 ) ‘ 𝑦 ) ) )
94 92 93 eqeq12d ( 𝜑 → ( ( ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑥 ) + ( 𝑦 ) ) ↔ ( ( *𝑟𝑅 ) ‘ ( 𝑥 ( +g𝑅 ) 𝑦 ) ) = ( ( ( *𝑟𝑅 ) ‘ 𝑥 ) ( +g𝑅 ) ( ( *𝑟𝑅 ) ‘ 𝑦 ) ) ) )
95 90 43 94 3imtr3d ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( *𝑟𝑅 ) ‘ ( 𝑥 ( +g𝑅 ) 𝑦 ) ) = ( ( ( *𝑟𝑅 ) ‘ 𝑥 ) ( +g𝑅 ) ( ( *𝑟𝑅 ) ‘ 𝑦 ) ) ) )
96 95 imp ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( *𝑟𝑅 ) ‘ ( 𝑥 ( +g𝑅 ) 𝑦 ) ) = ( ( ( *𝑟𝑅 ) ‘ 𝑥 ) ( +g𝑅 ) ( ( *𝑟𝑅 ) ‘ 𝑦 ) ) )
97 10 85 ringacl ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) )
98 97 3expb ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) )
99 5 98 sylan ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) )
100 10 66 67 stafval ( ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) → ( ( *rf𝑅 ) ‘ ( 𝑥 ( +g𝑅 ) 𝑦 ) ) = ( ( *𝑟𝑅 ) ‘ ( 𝑥 ( +g𝑅 ) 𝑦 ) ) )
101 99 100 syl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( *rf𝑅 ) ‘ ( 𝑥 ( +g𝑅 ) 𝑦 ) ) = ( ( *𝑟𝑅 ) ‘ ( 𝑥 ( +g𝑅 ) 𝑦 ) ) )
102 79 80 oveqan12d ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( *rf𝑅 ) ‘ 𝑥 ) ( +g𝑅 ) ( ( *rf𝑅 ) ‘ 𝑦 ) ) = ( ( ( *𝑟𝑅 ) ‘ 𝑥 ) ( +g𝑅 ) ( ( *𝑟𝑅 ) ‘ 𝑦 ) ) )
103 102 adantl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( *rf𝑅 ) ‘ 𝑥 ) ( +g𝑅 ) ( ( *rf𝑅 ) ‘ 𝑦 ) ) = ( ( ( *𝑟𝑅 ) ‘ 𝑥 ) ( +g𝑅 ) ( ( *𝑟𝑅 ) ‘ 𝑦 ) ) )
104 96 101 103 3eqtr4d ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( *rf𝑅 ) ‘ ( 𝑥 ( +g𝑅 ) 𝑦 ) ) = ( ( ( *rf𝑅 ) ‘ 𝑥 ) ( +g𝑅 ) ( ( *rf𝑅 ) ‘ 𝑦 ) ) )
105 10 11 13 14 15 5 17 70 83 84 85 86 89 104 isrhmd ( 𝜑 → ( *rf𝑅 ) ∈ ( 𝑅 RingHom ( oppr𝑅 ) ) )
106 10 66 67 staffval ( *rf𝑅 ) = ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( *𝑟𝑅 ) ‘ 𝑦 ) )
107 106 fmpt ( ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( *𝑟𝑅 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) ↔ ( *rf𝑅 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) )
108 89 107 sylibr ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( *𝑟𝑅 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) )
109 108 r19.21bi ( ( 𝜑𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( *𝑟𝑅 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑅 ) )
110 id ( 𝑥 = 𝑦𝑥 = 𝑦 )
111 fveq2 ( 𝑥 = 𝑦 → ( ( *𝑟𝑅 ) ‘ 𝑥 ) = ( ( *𝑟𝑅 ) ‘ 𝑦 ) )
112 111 fveq2d ( 𝑥 = 𝑦 → ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ 𝑦 ) ) )
113 110 112 eqeq12d ( 𝑥 = 𝑦 → ( 𝑥 = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) ↔ 𝑦 = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ 𝑦 ) ) ) )
114 113 rspccva ( ( ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝑥 = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑦 = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ 𝑦 ) ) )
115 30 114 sylan ( ( 𝜑𝑦 ∈ ( Base ‘ 𝑅 ) ) → 𝑦 = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ 𝑦 ) ) )
116 115 adantrl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑦 = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ 𝑦 ) ) )
117 fveq2 ( 𝑥 = ( ( *𝑟𝑅 ) ‘ 𝑦 ) → ( ( *𝑟𝑅 ) ‘ 𝑥 ) = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ 𝑦 ) ) )
118 117 eqeq2d ( 𝑥 = ( ( *𝑟𝑅 ) ‘ 𝑦 ) → ( 𝑦 = ( ( *𝑟𝑅 ) ‘ 𝑥 ) ↔ 𝑦 = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ 𝑦 ) ) ) )
119 116 118 syl5ibrcom ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 = ( ( *𝑟𝑅 ) ‘ 𝑦 ) → 𝑦 = ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) )
120 29 adantrr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑥 = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) )
121 fveq2 ( 𝑦 = ( ( *𝑟𝑅 ) ‘ 𝑥 ) → ( ( *𝑟𝑅 ) ‘ 𝑦 ) = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) )
122 121 eqeq2d ( 𝑦 = ( ( *𝑟𝑅 ) ‘ 𝑥 ) → ( 𝑥 = ( ( *𝑟𝑅 ) ‘ 𝑦 ) ↔ 𝑥 = ( ( *𝑟𝑅 ) ‘ ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) ) )
123 120 122 syl5ibrcom ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑦 = ( ( *𝑟𝑅 ) ‘ 𝑥 ) → 𝑥 = ( ( *𝑟𝑅 ) ‘ 𝑦 ) ) )
124 119 123 impbid ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 = ( ( *𝑟𝑅 ) ‘ 𝑦 ) ↔ 𝑦 = ( ( *𝑟𝑅 ) ‘ 𝑥 ) ) )
125 88 87 109 124 f1ocnv2d ( 𝜑 → ( ( *rf𝑅 ) : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑅 ) ∧ ( *rf𝑅 ) = ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( *𝑟𝑅 ) ‘ 𝑦 ) ) ) )
126 125 simprd ( 𝜑 ( *rf𝑅 ) = ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( *𝑟𝑅 ) ‘ 𝑦 ) ) )
127 106 126 eqtr4id ( 𝜑 → ( *rf𝑅 ) = ( *rf𝑅 ) )
128 12 67 issrng ( 𝑅 ∈ *-Ring ↔ ( ( *rf𝑅 ) ∈ ( 𝑅 RingHom ( oppr𝑅 ) ) ∧ ( *rf𝑅 ) = ( *rf𝑅 ) ) )
129 105 127 128 sylanbrc ( 𝜑𝑅 ∈ *-Ring )