| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isssp.g | ⊢ 𝐺  =  (  +𝑣  ‘ 𝑈 ) | 
						
							| 2 |  | isssp.f | ⊢ 𝐹  =  (  +𝑣  ‘ 𝑊 ) | 
						
							| 3 |  | isssp.s | ⊢ 𝑆  =  (  ·𝑠OLD  ‘ 𝑈 ) | 
						
							| 4 |  | isssp.r | ⊢ 𝑅  =  (  ·𝑠OLD  ‘ 𝑊 ) | 
						
							| 5 |  | isssp.n | ⊢ 𝑁  =  ( normCV ‘ 𝑈 ) | 
						
							| 6 |  | isssp.m | ⊢ 𝑀  =  ( normCV ‘ 𝑊 ) | 
						
							| 7 |  | isssp.h | ⊢ 𝐻  =  ( SubSp ‘ 𝑈 ) | 
						
							| 8 | 1 3 5 7 | sspval | ⊢ ( 𝑈  ∈  NrmCVec  →  𝐻  =  { 𝑤  ∈  NrmCVec  ∣  ( (  +𝑣  ‘ 𝑤 )  ⊆  𝐺  ∧  (  ·𝑠OLD  ‘ 𝑤 )  ⊆  𝑆  ∧  ( normCV ‘ 𝑤 )  ⊆  𝑁 ) } ) | 
						
							| 9 | 8 | eleq2d | ⊢ ( 𝑈  ∈  NrmCVec  →  ( 𝑊  ∈  𝐻  ↔  𝑊  ∈  { 𝑤  ∈  NrmCVec  ∣  ( (  +𝑣  ‘ 𝑤 )  ⊆  𝐺  ∧  (  ·𝑠OLD  ‘ 𝑤 )  ⊆  𝑆  ∧  ( normCV ‘ 𝑤 )  ⊆  𝑁 ) } ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  (  +𝑣  ‘ 𝑤 )  =  (  +𝑣  ‘ 𝑊 ) ) | 
						
							| 11 | 10 2 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  (  +𝑣  ‘ 𝑤 )  =  𝐹 ) | 
						
							| 12 | 11 | sseq1d | ⊢ ( 𝑤  =  𝑊  →  ( (  +𝑣  ‘ 𝑤 )  ⊆  𝐺  ↔  𝐹  ⊆  𝐺 ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  (  ·𝑠OLD  ‘ 𝑤 )  =  (  ·𝑠OLD  ‘ 𝑊 ) ) | 
						
							| 14 | 13 4 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  (  ·𝑠OLD  ‘ 𝑤 )  =  𝑅 ) | 
						
							| 15 | 14 | sseq1d | ⊢ ( 𝑤  =  𝑊  →  ( (  ·𝑠OLD  ‘ 𝑤 )  ⊆  𝑆  ↔  𝑅  ⊆  𝑆 ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( normCV ‘ 𝑤 )  =  ( normCV ‘ 𝑊 ) ) | 
						
							| 17 | 16 6 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( normCV ‘ 𝑤 )  =  𝑀 ) | 
						
							| 18 | 17 | sseq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( normCV ‘ 𝑤 )  ⊆  𝑁  ↔  𝑀  ⊆  𝑁 ) ) | 
						
							| 19 | 12 15 18 | 3anbi123d | ⊢ ( 𝑤  =  𝑊  →  ( ( (  +𝑣  ‘ 𝑤 )  ⊆  𝐺  ∧  (  ·𝑠OLD  ‘ 𝑤 )  ⊆  𝑆  ∧  ( normCV ‘ 𝑤 )  ⊆  𝑁 )  ↔  ( 𝐹  ⊆  𝐺  ∧  𝑅  ⊆  𝑆  ∧  𝑀  ⊆  𝑁 ) ) ) | 
						
							| 20 | 19 | elrab | ⊢ ( 𝑊  ∈  { 𝑤  ∈  NrmCVec  ∣  ( (  +𝑣  ‘ 𝑤 )  ⊆  𝐺  ∧  (  ·𝑠OLD  ‘ 𝑤 )  ⊆  𝑆  ∧  ( normCV ‘ 𝑤 )  ⊆  𝑁 ) }  ↔  ( 𝑊  ∈  NrmCVec  ∧  ( 𝐹  ⊆  𝐺  ∧  𝑅  ⊆  𝑆  ∧  𝑀  ⊆  𝑁 ) ) ) | 
						
							| 21 | 9 20 | bitrdi | ⊢ ( 𝑈  ∈  NrmCVec  →  ( 𝑊  ∈  𝐻  ↔  ( 𝑊  ∈  NrmCVec  ∧  ( 𝐹  ⊆  𝐺  ∧  𝑅  ⊆  𝑆  ∧  𝑀  ⊆  𝑁 ) ) ) ) |