Step |
Hyp |
Ref |
Expression |
1 |
|
issstrmgm.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
issstrmgm.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
issstrmgm.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) |
4 |
|
simplr |
⊢ ( ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝐻 ∈ Mgm ) |
5 |
|
simplr |
⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → 𝑆 ⊆ 𝐵 ) |
6 |
3 1
|
ressbas2 |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 = ( Base ‘ 𝐻 ) ) |
7 |
5 6
|
syl |
⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
8 |
7
|
eleq2d |
⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → ( 𝑥 ∈ 𝑆 ↔ 𝑥 ∈ ( Base ‘ 𝐻 ) ) ) |
9 |
8
|
biimpcd |
⊢ ( 𝑥 ∈ 𝑆 → ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → 𝑥 ∈ ( Base ‘ 𝐻 ) ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → 𝑥 ∈ ( Base ‘ 𝐻 ) ) ) |
11 |
10
|
impcom |
⊢ ( ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝐻 ) ) |
12 |
7
|
eleq2d |
⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → ( 𝑦 ∈ 𝑆 ↔ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) |
13 |
12
|
biimpcd |
⊢ ( 𝑦 ∈ 𝑆 → ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) |
15 |
14
|
impcom |
⊢ ( ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝐻 ) ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
17 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
18 |
16 17
|
mgmcl |
⊢ ( ( 𝐻 ∈ Mgm ∧ 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) |
19 |
4 11 15 18
|
syl3anc |
⊢ ( ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) |
20 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
21 |
20
|
ssex |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 ∈ V ) |
22 |
21
|
adantl |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ∈ V ) |
23 |
3 2
|
ressplusg |
⊢ ( 𝑆 ∈ V → + = ( +g ‘ 𝐻 ) ) |
24 |
22 23
|
syl |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) → + = ( +g ‘ 𝐻 ) ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → + = ( +g ‘ 𝐻 ) ) |
26 |
25
|
oveqdr |
⊢ ( ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
27 |
7
|
adantr |
⊢ ( ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
28 |
19 26 27
|
3eltr4d |
⊢ ( ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
29 |
28
|
ralrimivva |
⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
30 |
6
|
adantl |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
31 |
24
|
oveqd |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
32 |
31 30
|
eleq12d |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) → ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) ) |
33 |
30 32
|
raleqbidv |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) ) |
34 |
30 33
|
raleqbidv |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) ) |
35 |
34
|
biimpa |
⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) |
36 |
16 17
|
ismgm |
⊢ ( 𝐻 ∈ 𝑉 → ( 𝐻 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) ) |
37 |
36
|
ad2antrr |
⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → ( 𝐻 ∈ Mgm ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) ) |
38 |
35 37
|
mpbird |
⊢ ( ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → 𝐻 ∈ Mgm ) |
39 |
29 38
|
impbida |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝐻 ∈ Mgm ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) |