| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issstrmgm.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | issstrmgm.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | issstrmgm.h | ⊢ 𝐻  =  ( 𝐺  ↾s  𝑆 ) | 
						
							| 4 |  | simplr | ⊢ ( ( ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  ∧  𝐻  ∈  Mgm )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  𝐻  ∈  Mgm ) | 
						
							| 5 |  | simplr | ⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  ∧  𝐻  ∈  Mgm )  →  𝑆  ⊆  𝐵 ) | 
						
							| 6 | 3 1 | ressbas2 | ⊢ ( 𝑆  ⊆  𝐵  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  ∧  𝐻  ∈  Mgm )  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 8 | 7 | eleq2d | ⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  ∧  𝐻  ∈  Mgm )  →  ( 𝑥  ∈  𝑆  ↔  𝑥  ∈  ( Base ‘ 𝐻 ) ) ) | 
						
							| 9 | 8 | biimpcd | ⊢ ( 𝑥  ∈  𝑆  →  ( ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  ∧  𝐻  ∈  Mgm )  →  𝑥  ∈  ( Base ‘ 𝐻 ) ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 )  →  ( ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  ∧  𝐻  ∈  Mgm )  →  𝑥  ∈  ( Base ‘ 𝐻 ) ) ) | 
						
							| 11 | 10 | impcom | ⊢ ( ( ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  ∧  𝐻  ∈  Mgm )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  𝑥  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 12 | 7 | eleq2d | ⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  ∧  𝐻  ∈  Mgm )  →  ( 𝑦  ∈  𝑆  ↔  𝑦  ∈  ( Base ‘ 𝐻 ) ) ) | 
						
							| 13 | 12 | biimpcd | ⊢ ( 𝑦  ∈  𝑆  →  ( ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  ∧  𝐻  ∈  Mgm )  →  𝑦  ∈  ( Base ‘ 𝐻 ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 )  →  ( ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  ∧  𝐻  ∈  Mgm )  →  𝑦  ∈  ( Base ‘ 𝐻 ) ) ) | 
						
							| 15 | 14 | impcom | ⊢ ( ( ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  ∧  𝐻  ∈  Mgm )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  𝑦  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 17 |  | eqid | ⊢ ( +g ‘ 𝐻 )  =  ( +g ‘ 𝐻 ) | 
						
							| 18 | 16 17 | mgmcl | ⊢ ( ( 𝐻  ∈  Mgm  ∧  𝑥  ∈  ( Base ‘ 𝐻 )  ∧  𝑦  ∈  ( Base ‘ 𝐻 ) )  →  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 19 | 4 11 15 18 | syl3anc | ⊢ ( ( ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  ∧  𝐻  ∈  Mgm )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 20 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 21 | 20 | ssex | ⊢ ( 𝑆  ⊆  𝐵  →  𝑆  ∈  V ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  →  𝑆  ∈  V ) | 
						
							| 23 | 3 2 | ressplusg | ⊢ ( 𝑆  ∈  V  →   +   =  ( +g ‘ 𝐻 ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  →   +   =  ( +g ‘ 𝐻 ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  ∧  𝐻  ∈  Mgm )  →   +   =  ( +g ‘ 𝐻 ) ) | 
						
							| 26 | 25 | oveqdr | ⊢ ( ( ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  ∧  𝐻  ∈  Mgm )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  =  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) | 
						
							| 27 | 7 | adantr | ⊢ ( ( ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  ∧  𝐻  ∈  Mgm )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 28 | 19 26 27 | 3eltr4d | ⊢ ( ( ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  ∧  𝐻  ∈  Mgm )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 29 | 28 | ralrimivva | ⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  ∧  𝐻  ∈  Mgm )  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 30 | 6 | adantl | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 31 | 24 | oveqd | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  →  ( 𝑥  +  𝑦 )  =  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) | 
						
							| 32 | 31 30 | eleq12d | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  →  ( ( 𝑥  +  𝑦 )  ∈  𝑆  ↔  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  ∈  ( Base ‘ 𝐻 ) ) ) | 
						
							| 33 | 30 32 | raleqbidv | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  →  ( ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ↔  ∀ 𝑦  ∈  ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  ∈  ( Base ‘ 𝐻 ) ) ) | 
						
							| 34 | 30 33 | raleqbidv | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  →  ( ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ∀ 𝑦  ∈  ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  ∈  ( Base ‘ 𝐻 ) ) ) | 
						
							| 35 | 34 | biimpa | ⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  →  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ∀ 𝑦  ∈  ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 36 | 16 17 | ismgm | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝐻  ∈  Mgm  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ∀ 𝑦  ∈  ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  ∈  ( Base ‘ 𝐻 ) ) ) | 
						
							| 37 | 36 | ad2antrr | ⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  →  ( 𝐻  ∈  Mgm  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ∀ 𝑦  ∈  ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  ∈  ( Base ‘ 𝐻 ) ) ) | 
						
							| 38 | 35 37 | mpbird | ⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  →  𝐻  ∈  Mgm ) | 
						
							| 39 | 29 38 | impbida | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑆  ⊆  𝐵 )  →  ( 𝐻  ∈  Mgm  ↔  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 ) ) |