| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isstruct2 | ⊢ ( 𝐹  Struct  〈 𝑀 ,  𝑁 〉  ↔  ( 〈 𝑀 ,  𝑁 〉  ∈  (  ≤   ∩  ( ℕ  ×  ℕ ) )  ∧  Fun  ( 𝐹  ∖  { ∅ } )  ∧  dom  𝐹  ⊆  ( ... ‘ 〈 𝑀 ,  𝑁 〉 ) ) ) | 
						
							| 2 |  | df-3an | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝑀  ≤  𝑁 )  ↔  ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑀  ≤  𝑁 ) ) | 
						
							| 3 |  | brinxp2 | ⊢ ( 𝑀 (  ≤   ∩  ( ℕ  ×  ℕ ) ) 𝑁  ↔  ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑀  ≤  𝑁 ) ) | 
						
							| 4 |  | df-br | ⊢ ( 𝑀 (  ≤   ∩  ( ℕ  ×  ℕ ) ) 𝑁  ↔  〈 𝑀 ,  𝑁 〉  ∈  (  ≤   ∩  ( ℕ  ×  ℕ ) ) ) | 
						
							| 5 | 2 3 4 | 3bitr2i | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝑀  ≤  𝑁 )  ↔  〈 𝑀 ,  𝑁 〉  ∈  (  ≤   ∩  ( ℕ  ×  ℕ ) ) ) | 
						
							| 6 |  | biid | ⊢ ( Fun  ( 𝐹  ∖  { ∅ } )  ↔  Fun  ( 𝐹  ∖  { ∅ } ) ) | 
						
							| 7 |  | df-ov | ⊢ ( 𝑀 ... 𝑁 )  =  ( ... ‘ 〈 𝑀 ,  𝑁 〉 ) | 
						
							| 8 | 7 | sseq2i | ⊢ ( dom  𝐹  ⊆  ( 𝑀 ... 𝑁 )  ↔  dom  𝐹  ⊆  ( ... ‘ 〈 𝑀 ,  𝑁 〉 ) ) | 
						
							| 9 | 5 6 8 | 3anbi123i | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝑀  ≤  𝑁 )  ∧  Fun  ( 𝐹  ∖  { ∅ } )  ∧  dom  𝐹  ⊆  ( 𝑀 ... 𝑁 ) )  ↔  ( 〈 𝑀 ,  𝑁 〉  ∈  (  ≤   ∩  ( ℕ  ×  ℕ ) )  ∧  Fun  ( 𝐹  ∖  { ∅ } )  ∧  dom  𝐹  ⊆  ( ... ‘ 〈 𝑀 ,  𝑁 〉 ) ) ) | 
						
							| 10 | 1 9 | bitr4i | ⊢ ( 𝐹  Struct  〈 𝑀 ,  𝑁 〉  ↔  ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝑀  ≤  𝑁 )  ∧  Fun  ( 𝐹  ∖  { ∅ } )  ∧  dom  𝐹  ⊆  ( 𝑀 ... 𝑁 ) ) ) |