Step |
Hyp |
Ref |
Expression |
1 |
|
isstruct2 |
⊢ ( 𝐹 Struct 〈 𝑀 , 𝑁 〉 ↔ ( 〈 𝑀 , 𝑁 〉 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 〈 𝑀 , 𝑁 〉 ) ) ) |
2 |
|
df-3an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ↔ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑀 ≤ 𝑁 ) ) |
3 |
|
brinxp2 |
⊢ ( 𝑀 ( ≤ ∩ ( ℕ × ℕ ) ) 𝑁 ↔ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑀 ≤ 𝑁 ) ) |
4 |
|
df-br |
⊢ ( 𝑀 ( ≤ ∩ ( ℕ × ℕ ) ) 𝑁 ↔ 〈 𝑀 , 𝑁 〉 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ) |
5 |
2 3 4
|
3bitr2i |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ↔ 〈 𝑀 , 𝑁 〉 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ) |
6 |
|
biid |
⊢ ( Fun ( 𝐹 ∖ { ∅ } ) ↔ Fun ( 𝐹 ∖ { ∅ } ) ) |
7 |
|
df-ov |
⊢ ( 𝑀 ... 𝑁 ) = ( ... ‘ 〈 𝑀 , 𝑁 〉 ) |
8 |
7
|
sseq2i |
⊢ ( dom 𝐹 ⊆ ( 𝑀 ... 𝑁 ) ↔ dom 𝐹 ⊆ ( ... ‘ 〈 𝑀 , 𝑁 〉 ) ) |
9 |
5 6 8
|
3anbi123i |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( 𝑀 ... 𝑁 ) ) ↔ ( 〈 𝑀 , 𝑁 〉 ∈ ( ≤ ∩ ( ℕ × ℕ ) ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( ... ‘ 〈 𝑀 , 𝑁 〉 ) ) ) |
10 |
1 9
|
bitr4i |
⊢ ( 𝐹 Struct 〈 𝑀 , 𝑁 〉 ↔ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( 𝑀 ... 𝑁 ) ) ) |