Step |
Hyp |
Ref |
Expression |
1 |
|
issubassa.s |
⊢ 𝑆 = ( 𝑊 ↾s 𝐴 ) |
2 |
|
issubassa.l |
⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) |
3 |
|
issubassa.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
4 |
|
issubassa.o |
⊢ 1 = ( 1r ‘ 𝑊 ) |
5 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → 𝑊 ∈ AssAlg ) |
6 |
|
assaring |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) |
7 |
5 6
|
syl |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → 𝑊 ∈ Ring ) |
8 |
|
assaring |
⊢ ( 𝑆 ∈ AssAlg → 𝑆 ∈ Ring ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → 𝑆 ∈ Ring ) |
10 |
1 9
|
eqeltrrid |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → ( 𝑊 ↾s 𝐴 ) ∈ Ring ) |
11 |
|
simpl3 |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → 𝐴 ⊆ 𝑉 ) |
12 |
|
simpl2 |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → 1 ∈ 𝐴 ) |
13 |
11 12
|
jca |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → ( 𝐴 ⊆ 𝑉 ∧ 1 ∈ 𝐴 ) ) |
14 |
3 4
|
issubrg |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ↔ ( ( 𝑊 ∈ Ring ∧ ( 𝑊 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ 𝑉 ∧ 1 ∈ 𝐴 ) ) ) |
15 |
7 10 13 14
|
syl21anbrc |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → 𝐴 ∈ ( SubRing ‘ 𝑊 ) ) |
16 |
|
assalmod |
⊢ ( 𝑆 ∈ AssAlg → 𝑆 ∈ LMod ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → 𝑆 ∈ LMod ) |
18 |
|
assalmod |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) |
19 |
1 3 2
|
islss3 |
⊢ ( 𝑊 ∈ LMod → ( 𝐴 ∈ 𝐿 ↔ ( 𝐴 ⊆ 𝑉 ∧ 𝑆 ∈ LMod ) ) ) |
20 |
5 18 19
|
3syl |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → ( 𝐴 ∈ 𝐿 ↔ ( 𝐴 ⊆ 𝑉 ∧ 𝑆 ∈ LMod ) ) ) |
21 |
11 17 20
|
mpbir2and |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → 𝐴 ∈ 𝐿 ) |
22 |
15 21
|
jca |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) |
23 |
1 2
|
issubassa3 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → 𝑆 ∈ AssAlg ) |
24 |
23
|
3ad2antl1 |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → 𝑆 ∈ AssAlg ) |
25 |
22 24
|
impbida |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) → ( 𝑆 ∈ AssAlg ↔ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) ) |