| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issubassa.s | ⊢ 𝑆  =  ( 𝑊  ↾s  𝐴 ) | 
						
							| 2 |  | issubassa.l | ⊢ 𝐿  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 |  | issubassa.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 4 |  | issubassa.o | ⊢  1   =  ( 1r ‘ 𝑊 ) | 
						
							| 5 |  | simpl1 | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧   1   ∈  𝐴  ∧  𝐴  ⊆  𝑉 )  ∧  𝑆  ∈  AssAlg )  →  𝑊  ∈  AssAlg ) | 
						
							| 6 |  | assaring | ⊢ ( 𝑊  ∈  AssAlg  →  𝑊  ∈  Ring ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧   1   ∈  𝐴  ∧  𝐴  ⊆  𝑉 )  ∧  𝑆  ∈  AssAlg )  →  𝑊  ∈  Ring ) | 
						
							| 8 |  | assaring | ⊢ ( 𝑆  ∈  AssAlg  →  𝑆  ∈  Ring ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧   1   ∈  𝐴  ∧  𝐴  ⊆  𝑉 )  ∧  𝑆  ∈  AssAlg )  →  𝑆  ∈  Ring ) | 
						
							| 10 | 1 9 | eqeltrrid | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧   1   ∈  𝐴  ∧  𝐴  ⊆  𝑉 )  ∧  𝑆  ∈  AssAlg )  →  ( 𝑊  ↾s  𝐴 )  ∈  Ring ) | 
						
							| 11 |  | simpl3 | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧   1   ∈  𝐴  ∧  𝐴  ⊆  𝑉 )  ∧  𝑆  ∈  AssAlg )  →  𝐴  ⊆  𝑉 ) | 
						
							| 12 |  | simpl2 | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧   1   ∈  𝐴  ∧  𝐴  ⊆  𝑉 )  ∧  𝑆  ∈  AssAlg )  →   1   ∈  𝐴 ) | 
						
							| 13 | 11 12 | jca | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧   1   ∈  𝐴  ∧  𝐴  ⊆  𝑉 )  ∧  𝑆  ∈  AssAlg )  →  ( 𝐴  ⊆  𝑉  ∧   1   ∈  𝐴 ) ) | 
						
							| 14 | 3 4 | issubrg | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑊 )  ↔  ( ( 𝑊  ∈  Ring  ∧  ( 𝑊  ↾s  𝐴 )  ∈  Ring )  ∧  ( 𝐴  ⊆  𝑉  ∧   1   ∈  𝐴 ) ) ) | 
						
							| 15 | 7 10 13 14 | syl21anbrc | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧   1   ∈  𝐴  ∧  𝐴  ⊆  𝑉 )  ∧  𝑆  ∈  AssAlg )  →  𝐴  ∈  ( SubRing ‘ 𝑊 ) ) | 
						
							| 16 |  | assalmod | ⊢ ( 𝑆  ∈  AssAlg  →  𝑆  ∈  LMod ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧   1   ∈  𝐴  ∧  𝐴  ⊆  𝑉 )  ∧  𝑆  ∈  AssAlg )  →  𝑆  ∈  LMod ) | 
						
							| 18 |  | assalmod | ⊢ ( 𝑊  ∈  AssAlg  →  𝑊  ∈  LMod ) | 
						
							| 19 | 1 3 2 | islss3 | ⊢ ( 𝑊  ∈  LMod  →  ( 𝐴  ∈  𝐿  ↔  ( 𝐴  ⊆  𝑉  ∧  𝑆  ∈  LMod ) ) ) | 
						
							| 20 | 5 18 19 | 3syl | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧   1   ∈  𝐴  ∧  𝐴  ⊆  𝑉 )  ∧  𝑆  ∈  AssAlg )  →  ( 𝐴  ∈  𝐿  ↔  ( 𝐴  ⊆  𝑉  ∧  𝑆  ∈  LMod ) ) ) | 
						
							| 21 | 11 17 20 | mpbir2and | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧   1   ∈  𝐴  ∧  𝐴  ⊆  𝑉 )  ∧  𝑆  ∈  AssAlg )  →  𝐴  ∈  𝐿 ) | 
						
							| 22 | 15 21 | jca | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧   1   ∈  𝐴  ∧  𝐴  ⊆  𝑉 )  ∧  𝑆  ∈  AssAlg )  →  ( 𝐴  ∈  ( SubRing ‘ 𝑊 )  ∧  𝐴  ∈  𝐿 ) ) | 
						
							| 23 | 1 2 | issubassa3 | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  ( 𝐴  ∈  ( SubRing ‘ 𝑊 )  ∧  𝐴  ∈  𝐿 ) )  →  𝑆  ∈  AssAlg ) | 
						
							| 24 | 23 | 3ad2antl1 | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧   1   ∈  𝐴  ∧  𝐴  ⊆  𝑉 )  ∧  ( 𝐴  ∈  ( SubRing ‘ 𝑊 )  ∧  𝐴  ∈  𝐿 ) )  →  𝑆  ∈  AssAlg ) | 
						
							| 25 | 22 24 | impbida | ⊢ ( ( 𝑊  ∈  AssAlg  ∧   1   ∈  𝐴  ∧  𝐴  ⊆  𝑉 )  →  ( 𝑆  ∈  AssAlg  ↔  ( 𝐴  ∈  ( SubRing ‘ 𝑊 )  ∧  𝐴  ∈  𝐿 ) ) ) |