Step |
Hyp |
Ref |
Expression |
1 |
|
issubassa2.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
2 |
|
issubassa2.l |
⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
5 |
1 3 4
|
rnascl |
⊢ ( 𝑊 ∈ AssAlg → ran 𝐴 = ( ( LSpan ‘ 𝑊 ) ‘ { ( 1r ‘ 𝑊 ) } ) ) |
6 |
5
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆 ∈ 𝐿 ) → ran 𝐴 = ( ( LSpan ‘ 𝑊 ) ‘ { ( 1r ‘ 𝑊 ) } ) ) |
7 |
|
assalmod |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆 ∈ 𝐿 ) → 𝑊 ∈ LMod ) |
9 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆 ∈ 𝐿 ) → 𝑆 ∈ 𝐿 ) |
10 |
3
|
subrg1cl |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 1r ‘ 𝑊 ) ∈ 𝑆 ) |
11 |
10
|
ad2antlr |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆 ∈ 𝐿 ) → ( 1r ‘ 𝑊 ) ∈ 𝑆 ) |
12 |
2 4 8 9 11
|
lspsnel5a |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆 ∈ 𝐿 ) → ( ( LSpan ‘ 𝑊 ) ‘ { ( 1r ‘ 𝑊 ) } ) ⊆ 𝑆 ) |
13 |
6 12
|
eqsstrd |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆 ∈ 𝐿 ) → ran 𝐴 ⊆ 𝑆 ) |
14 |
|
subrgsubg |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ) |
15 |
14
|
ad2antlr |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) → 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ) |
16 |
|
simplll |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑊 ∈ AssAlg ) |
17 |
|
simprl |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
19 |
18
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
20 |
19
|
ad2antlr |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
21 |
20
|
sselda |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
22 |
21
|
adantrl |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
23 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
24 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
25 |
|
eqid |
⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) |
26 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
27 |
1 23 24 18 25 26
|
asclmul1 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) |
28 |
16 17 22 27
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) |
29 |
|
simpllr |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) |
30 |
|
simplr |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ran 𝐴 ⊆ 𝑆 ) |
31 |
1 23 24
|
asclfn |
⊢ 𝐴 Fn ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
32 |
31
|
a1i |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) → 𝐴 Fn ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
33 |
|
fnfvelrn |
⊢ ( ( 𝐴 Fn ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝐴 ‘ 𝑥 ) ∈ ran 𝐴 ) |
34 |
32 33
|
sylan |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝐴 ‘ 𝑥 ) ∈ ran 𝐴 ) |
35 |
30 34
|
sseldd |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝐴 ‘ 𝑥 ) ∈ 𝑆 ) |
36 |
35
|
adantrr |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝐴 ‘ 𝑥 ) ∈ 𝑆 ) |
37 |
|
simprr |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ 𝑆 ) |
38 |
25
|
subrgmcl |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝐴 ‘ 𝑥 ) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) ∈ 𝑆 ) |
39 |
29 36 37 38
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) ∈ 𝑆 ) |
40 |
28 39
|
eqeltrrd |
⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑆 ) |
41 |
40
|
ralrimivva |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑆 ) |
42 |
23 24 18 26 2
|
islss4 |
⊢ ( 𝑊 ∈ LMod → ( 𝑆 ∈ 𝐿 ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑆 ) ) ) |
43 |
7 42
|
syl |
⊢ ( 𝑊 ∈ AssAlg → ( 𝑆 ∈ 𝐿 ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑆 ) ) ) |
44 |
43
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) → ( 𝑆 ∈ 𝐿 ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑆 ) ) ) |
45 |
15 41 44
|
mpbir2and |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) → 𝑆 ∈ 𝐿 ) |
46 |
13 45
|
impbida |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑆 ∈ 𝐿 ↔ ran 𝐴 ⊆ 𝑆 ) ) |