Metamath Proof Explorer


Theorem issubassa2

Description: A subring of a unital algebra is a subspace and thus a subalgebra iff it contains all scalar multiples of the identity. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Hypotheses issubassa2.a 𝐴 = ( algSc ‘ 𝑊 )
issubassa2.l 𝐿 = ( LSubSp ‘ 𝑊 )
Assertion issubassa2 ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑆𝐿 ↔ ran 𝐴𝑆 ) )

Proof

Step Hyp Ref Expression
1 issubassa2.a 𝐴 = ( algSc ‘ 𝑊 )
2 issubassa2.l 𝐿 = ( LSubSp ‘ 𝑊 )
3 eqid ( 1r𝑊 ) = ( 1r𝑊 )
4 eqid ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 )
5 1 3 4 rnascl ( 𝑊 ∈ AssAlg → ran 𝐴 = ( ( LSpan ‘ 𝑊 ) ‘ { ( 1r𝑊 ) } ) )
6 5 ad2antrr ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆𝐿 ) → ran 𝐴 = ( ( LSpan ‘ 𝑊 ) ‘ { ( 1r𝑊 ) } ) )
7 assalmod ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod )
8 7 ad2antrr ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆𝐿 ) → 𝑊 ∈ LMod )
9 simpr ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆𝐿 ) → 𝑆𝐿 )
10 3 subrg1cl ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 1r𝑊 ) ∈ 𝑆 )
11 10 ad2antlr ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆𝐿 ) → ( 1r𝑊 ) ∈ 𝑆 )
12 2 4 8 9 11 lspsnel5a ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆𝐿 ) → ( ( LSpan ‘ 𝑊 ) ‘ { ( 1r𝑊 ) } ) ⊆ 𝑆 )
13 6 12 eqsstrd ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆𝐿 ) → ran 𝐴𝑆 )
14 subrgsubg ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ∈ ( SubGrp ‘ 𝑊 ) )
15 14 ad2antlr ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴𝑆 ) → 𝑆 ∈ ( SubGrp ‘ 𝑊 ) )
16 simplll ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦𝑆 ) ) → 𝑊 ∈ AssAlg )
17 simprl ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦𝑆 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
18 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
19 18 subrgss ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) )
20 19 ad2antlr ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) )
21 20 sselda ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴𝑆 ) ∧ 𝑦𝑆 ) → 𝑦 ∈ ( Base ‘ 𝑊 ) )
22 21 adantrl ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) )
23 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
24 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
25 eqid ( .r𝑊 ) = ( .r𝑊 )
26 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
27 1 23 24 18 25 26 asclmul1 ( ( 𝑊 ∈ AssAlg ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐴𝑥 ) ( .r𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) )
28 16 17 22 27 syl3anc ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦𝑆 ) ) → ( ( 𝐴𝑥 ) ( .r𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) )
29 simpllr ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦𝑆 ) ) → 𝑆 ∈ ( SubRing ‘ 𝑊 ) )
30 simplr ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴𝑆 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ran 𝐴𝑆 )
31 1 23 24 asclfn 𝐴 Fn ( Base ‘ ( Scalar ‘ 𝑊 ) )
32 31 a1i ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴𝑆 ) → 𝐴 Fn ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
33 fnfvelrn ( ( 𝐴 Fn ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝐴𝑥 ) ∈ ran 𝐴 )
34 32 33 sylan ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴𝑆 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝐴𝑥 ) ∈ ran 𝐴 )
35 30 34 sseldd ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴𝑆 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝐴𝑥 ) ∈ 𝑆 )
36 35 adantrr ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦𝑆 ) ) → ( 𝐴𝑥 ) ∈ 𝑆 )
37 simprr ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦𝑆 ) ) → 𝑦𝑆 )
38 25 subrgmcl ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝐴𝑥 ) ∈ 𝑆𝑦𝑆 ) → ( ( 𝐴𝑥 ) ( .r𝑊 ) 𝑦 ) ∈ 𝑆 )
39 29 36 37 38 syl3anc ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦𝑆 ) ) → ( ( 𝐴𝑥 ) ( .r𝑊 ) 𝑦 ) ∈ 𝑆 )
40 28 39 eqeltrrd ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦𝑆 ) ) → ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) ∈ 𝑆 )
41 40 ralrimivva ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴𝑆 ) → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦𝑆 ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) ∈ 𝑆 )
42 23 24 18 26 2 islss4 ( 𝑊 ∈ LMod → ( 𝑆𝐿 ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦𝑆 ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) ∈ 𝑆 ) ) )
43 7 42 syl ( 𝑊 ∈ AssAlg → ( 𝑆𝐿 ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦𝑆 ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) ∈ 𝑆 ) ) )
44 43 ad2antrr ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴𝑆 ) → ( 𝑆𝐿 ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦𝑆 ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) ∈ 𝑆 ) ) )
45 15 41 44 mpbir2and ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴𝑆 ) → 𝑆𝐿 )
46 13 45 impbida ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑆𝐿 ↔ ran 𝐴𝑆 ) )