| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issubassa2.a | ⊢ 𝐴  =  ( algSc ‘ 𝑊 ) | 
						
							| 2 |  | issubassa2.l | ⊢ 𝐿  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 |  | eqid | ⊢ ( 1r ‘ 𝑊 )  =  ( 1r ‘ 𝑊 ) | 
						
							| 4 |  | eqid | ⊢ ( LSpan ‘ 𝑊 )  =  ( LSpan ‘ 𝑊 ) | 
						
							| 5 | 1 3 4 | rnascl | ⊢ ( 𝑊  ∈  AssAlg  →  ran  𝐴  =  ( ( LSpan ‘ 𝑊 ) ‘ { ( 1r ‘ 𝑊 ) } ) ) | 
						
							| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  𝑆  ∈  𝐿 )  →  ran  𝐴  =  ( ( LSpan ‘ 𝑊 ) ‘ { ( 1r ‘ 𝑊 ) } ) ) | 
						
							| 7 |  | assalmod | ⊢ ( 𝑊  ∈  AssAlg  →  𝑊  ∈  LMod ) | 
						
							| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  𝑆  ∈  𝐿 )  →  𝑊  ∈  LMod ) | 
						
							| 9 |  | simpr | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  𝑆  ∈  𝐿 )  →  𝑆  ∈  𝐿 ) | 
						
							| 10 | 3 | subrg1cl | ⊢ ( 𝑆  ∈  ( SubRing ‘ 𝑊 )  →  ( 1r ‘ 𝑊 )  ∈  𝑆 ) | 
						
							| 11 | 10 | ad2antlr | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  𝑆  ∈  𝐿 )  →  ( 1r ‘ 𝑊 )  ∈  𝑆 ) | 
						
							| 12 | 2 4 8 9 11 | ellspsn5 | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  𝑆  ∈  𝐿 )  →  ( ( LSpan ‘ 𝑊 ) ‘ { ( 1r ‘ 𝑊 ) } )  ⊆  𝑆 ) | 
						
							| 13 | 6 12 | eqsstrd | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  𝑆  ∈  𝐿 )  →  ran  𝐴  ⊆  𝑆 ) | 
						
							| 14 |  | subrgsubg | ⊢ ( 𝑆  ∈  ( SubRing ‘ 𝑊 )  →  𝑆  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 15 | 14 | ad2antlr | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  ran  𝐴  ⊆  𝑆 )  →  𝑆  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 16 |  | simplll | ⊢ ( ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  ran  𝐴  ⊆  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  𝑆 ) )  →  𝑊  ∈  AssAlg ) | 
						
							| 17 |  | simprl | ⊢ ( ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  ran  𝐴  ⊆  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  𝑆 ) )  →  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 19 | 18 | subrgss | ⊢ ( 𝑆  ∈  ( SubRing ‘ 𝑊 )  →  𝑆  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 20 | 19 | ad2antlr | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  ran  𝐴  ⊆  𝑆 )  →  𝑆  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 21 | 20 | sselda | ⊢ ( ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  ran  𝐴  ⊆  𝑆 )  ∧  𝑦  ∈  𝑆 )  →  𝑦  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 22 | 21 | adantrl | ⊢ ( ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  ran  𝐴  ⊆  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  𝑆 ) )  →  𝑦  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 23 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 24 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 25 |  | eqid | ⊢ ( .r ‘ 𝑊 )  =  ( .r ‘ 𝑊 ) | 
						
							| 26 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 27 | 1 23 24 18 25 26 | asclmul1 | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) | 
						
							| 28 | 16 17 22 27 | syl3anc | ⊢ ( ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  ran  𝐴  ⊆  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  𝑆 ) )  →  ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 )  =  ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) | 
						
							| 29 |  | simpllr | ⊢ ( ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  ran  𝐴  ⊆  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  𝑆 ) )  →  𝑆  ∈  ( SubRing ‘ 𝑊 ) ) | 
						
							| 30 |  | simplr | ⊢ ( ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  ran  𝐴  ⊆  𝑆 )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  ran  𝐴  ⊆  𝑆 ) | 
						
							| 31 | 1 23 24 | asclfn | ⊢ 𝐴  Fn  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 32 | 31 | a1i | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  ran  𝐴  ⊆  𝑆 )  →  𝐴  Fn  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 33 |  | fnfvelrn | ⊢ ( ( 𝐴  Fn  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  ( 𝐴 ‘ 𝑥 )  ∈  ran  𝐴 ) | 
						
							| 34 | 32 33 | sylan | ⊢ ( ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  ran  𝐴  ⊆  𝑆 )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  ( 𝐴 ‘ 𝑥 )  ∈  ran  𝐴 ) | 
						
							| 35 | 30 34 | sseldd | ⊢ ( ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  ran  𝐴  ⊆  𝑆 )  ∧  𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  ( 𝐴 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 36 | 35 | adantrr | ⊢ ( ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  ran  𝐴  ⊆  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝐴 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 37 |  | simprr | ⊢ ( ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  ran  𝐴  ⊆  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  𝑆 ) )  →  𝑦  ∈  𝑆 ) | 
						
							| 38 | 25 | subrgmcl | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ 𝑊 )  ∧  ( 𝐴 ‘ 𝑥 )  ∈  𝑆  ∧  𝑦  ∈  𝑆 )  →  ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 )  ∈  𝑆 ) | 
						
							| 39 | 29 36 37 38 | syl3anc | ⊢ ( ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  ran  𝐴  ⊆  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  𝑆 ) )  →  ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 )  ∈  𝑆 ) | 
						
							| 40 | 28 39 | eqeltrrd | ⊢ ( ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  ran  𝐴  ⊆  𝑆 )  ∧  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑆 ) | 
						
							| 41 | 40 | ralrimivva | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  ran  𝐴  ⊆  𝑆 )  →  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑆 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑆 ) | 
						
							| 42 | 23 24 18 26 2 | islss4 | ⊢ ( 𝑊  ∈  LMod  →  ( 𝑆  ∈  𝐿  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝑊 )  ∧  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑆 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 43 | 7 42 | syl | ⊢ ( 𝑊  ∈  AssAlg  →  ( 𝑆  ∈  𝐿  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝑊 )  ∧  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑆 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 44 | 43 | ad2antrr | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  ran  𝐴  ⊆  𝑆 )  →  ( 𝑆  ∈  𝐿  ↔  ( 𝑆  ∈  ( SubGrp ‘ 𝑊 )  ∧  ∀ 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦  ∈  𝑆 ( 𝑥 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 45 | 15 41 44 | mpbir2and | ⊢ ( ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  ∧  ran  𝐴  ⊆  𝑆 )  →  𝑆  ∈  𝐿 ) | 
						
							| 46 | 13 45 | impbida | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ∈  ( SubRing ‘ 𝑊 ) )  →  ( 𝑆  ∈  𝐿  ↔  ran  𝐴  ⊆  𝑆 ) ) |