Step |
Hyp |
Ref |
Expression |
1 |
|
issubassa.s |
⊢ 𝑆 = ( 𝑊 ↾s 𝐴 ) |
2 |
|
issubassa.l |
⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) |
3 |
1
|
subrgbas |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
4 |
3
|
ad2antrl |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
5 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
6 |
1 5
|
resssca |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑆 ) ) |
7 |
6
|
ad2antrl |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑆 ) ) |
8 |
|
eqidd |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
9 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
10 |
1 9
|
ressvsca |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑆 ) ) |
11 |
10
|
ad2antrl |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑆 ) ) |
12 |
|
eqid |
⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) |
13 |
1 12
|
ressmulr |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) → ( .r ‘ 𝑊 ) = ( .r ‘ 𝑆 ) ) |
14 |
13
|
ad2antrl |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → ( .r ‘ 𝑊 ) = ( .r ‘ 𝑆 ) ) |
15 |
|
assalmod |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) |
16 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) → 𝐴 ∈ 𝐿 ) |
17 |
1 2
|
lsslmod |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐿 ) → 𝑆 ∈ LMod ) |
18 |
15 16 17
|
syl2an |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → 𝑆 ∈ LMod ) |
19 |
1
|
subrgring |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ∈ Ring ) |
20 |
19
|
ad2antrl |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → 𝑆 ∈ Ring ) |
21 |
5
|
assasca |
⊢ ( 𝑊 ∈ AssAlg → ( Scalar ‘ 𝑊 ) ∈ CRing ) |
22 |
21
|
adantr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → ( Scalar ‘ 𝑊 ) ∈ CRing ) |
23 |
|
idd |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
25 |
24
|
subrgss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 ⊆ ( Base ‘ 𝑊 ) ) |
26 |
25
|
ad2antrl |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → 𝐴 ⊆ ( Base ‘ 𝑊 ) ) |
27 |
26
|
sseld |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) |
28 |
26
|
sseld |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → ( 𝑧 ∈ 𝐴 → 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) |
29 |
23 27 28
|
3anim123d |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → ( ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) ) |
30 |
29
|
imp |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) |
31 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
32 |
24 5 31 9 12
|
assaass |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
33 |
32
|
adantlr |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
34 |
30 33
|
syldan |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
35 |
24 5 31 9 12
|
assaassr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
36 |
35
|
adantlr |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
37 |
30 36
|
syldan |
⊢ ( ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
38 |
4 7 8 11 14 18 20 22 34 37
|
isassad |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → 𝑆 ∈ AssAlg ) |