Step |
Hyp |
Ref |
Expression |
1 |
|
issubdrg.s |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
2 |
|
issubdrg.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
issubdrg.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
4 |
|
simpllr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) |
5 |
1
|
subrgring |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
6 |
4 5
|
syl |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝑆 ∈ Ring ) |
7 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) |
8 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0 ) ) |
9 |
7 8
|
sylib |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0 ) ) |
10 |
9
|
simpld |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝑥 ∈ 𝐴 ) |
11 |
1
|
subrgbas |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
12 |
4 11
|
syl |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
13 |
10 12
|
eleqtrd |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
14 |
9
|
simprd |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝑥 ≠ 0 ) |
15 |
1 2
|
subrg0 |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 0 = ( 0g ‘ 𝑆 ) ) |
16 |
4 15
|
syl |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 0 = ( 0g ‘ 𝑆 ) ) |
17 |
14 16
|
neeqtrd |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝑥 ≠ ( 0g ‘ 𝑆 ) ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
19 |
|
eqid |
⊢ ( Unit ‘ 𝑆 ) = ( Unit ‘ 𝑆 ) |
20 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
21 |
18 19 20
|
drngunit |
⊢ ( 𝑆 ∈ DivRing → ( 𝑥 ∈ ( Unit ‘ 𝑆 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) ) |
22 |
21
|
ad2antlr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → ( 𝑥 ∈ ( Unit ‘ 𝑆 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) ) |
23 |
13 17 22
|
mpbir2and |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → 𝑥 ∈ ( Unit ‘ 𝑆 ) ) |
24 |
|
eqid |
⊢ ( invr ‘ 𝑆 ) = ( invr ‘ 𝑆 ) |
25 |
19 24 18
|
ringinvcl |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑥 ∈ ( Unit ‘ 𝑆 ) ) → ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
26 |
6 23 25
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
27 |
1 3 19 24
|
subrginv |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ ( Unit ‘ 𝑆 ) ) → ( 𝐼 ‘ 𝑥 ) = ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) |
28 |
4 23 27
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → ( 𝐼 ‘ 𝑥 ) = ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) |
29 |
26 28 12
|
3eltr4d |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) |
30 |
29
|
ralrimiva |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑆 ∈ DivRing ) → ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) |
31 |
5
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → 𝑆 ∈ Ring ) |
32 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
33 |
1 32 19
|
subrguss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( Unit ‘ 𝑆 ) ⊆ ( Unit ‘ 𝑅 ) ) |
34 |
33
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑆 ) ⊆ ( Unit ‘ 𝑅 ) ) |
35 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
36 |
35 32 2
|
isdrng |
⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ) ) |
37 |
36
|
simprbi |
⊢ ( 𝑅 ∈ DivRing → ( Unit ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ) |
38 |
37
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ) |
39 |
34 38
|
sseqtrd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑆 ) ⊆ ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ) |
40 |
18 19
|
unitss |
⊢ ( Unit ‘ 𝑆 ) ⊆ ( Base ‘ 𝑆 ) |
41 |
11
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
42 |
40 41
|
sseqtrrid |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑆 ) ⊆ 𝐴 ) |
43 |
39 42
|
ssind |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑆 ) ⊆ ( ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ∩ 𝐴 ) ) |
44 |
35
|
subrgss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
45 |
44
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
46 |
|
difin2 |
⊢ ( 𝐴 ⊆ ( Base ‘ 𝑅 ) → ( 𝐴 ∖ { 0 } ) = ( ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ∩ 𝐴 ) ) |
47 |
45 46
|
syl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝐴 ∖ { 0 } ) = ( ( ( Base ‘ 𝑅 ) ∖ { 0 } ) ∩ 𝐴 ) ) |
48 |
43 47
|
sseqtrrd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑆 ) ⊆ ( 𝐴 ∖ { 0 } ) ) |
49 |
44
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
50 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) |
51 |
50 8
|
sylib |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0 ) ) |
52 |
51
|
simpld |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) |
53 |
49 52
|
sseldd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
54 |
51
|
simprd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝑥 ≠ 0 ) |
55 |
35 32 2
|
drngunit |
⊢ ( 𝑅 ∈ DivRing → ( 𝑥 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ 0 ) ) ) |
56 |
55
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → ( 𝑥 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ≠ 0 ) ) ) |
57 |
53 54 56
|
mpbir2and |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝑥 ∈ ( Unit ‘ 𝑅 ) ) |
58 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) |
59 |
1 32 19 3
|
subrgunit |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑥 ∈ ( Unit ‘ 𝑆 ) ↔ ( 𝑥 ∈ ( Unit ‘ 𝑅 ) ∧ 𝑥 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) ) |
60 |
59
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → ( 𝑥 ∈ ( Unit ‘ 𝑆 ) ↔ ( 𝑥 ∈ ( Unit ‘ 𝑅 ) ∧ 𝑥 ∈ 𝐴 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) ) |
61 |
57 52 58 60
|
mpbir3and |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ( 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝑥 ∈ ( Unit ‘ 𝑆 ) ) |
62 |
61
|
expr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ) → ( ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 → 𝑥 ∈ ( Unit ‘ 𝑆 ) ) ) |
63 |
62
|
ralimdva |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 → ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) 𝑥 ∈ ( Unit ‘ 𝑆 ) ) ) |
64 |
63
|
imp |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) 𝑥 ∈ ( Unit ‘ 𝑆 ) ) |
65 |
|
dfss3 |
⊢ ( ( 𝐴 ∖ { 0 } ) ⊆ ( Unit ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) 𝑥 ∈ ( Unit ‘ 𝑆 ) ) |
66 |
64 65
|
sylibr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝐴 ∖ { 0 } ) ⊆ ( Unit ‘ 𝑆 ) ) |
67 |
48 66
|
eqssd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑆 ) = ( 𝐴 ∖ { 0 } ) ) |
68 |
15
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → 0 = ( 0g ‘ 𝑆 ) ) |
69 |
68
|
sneqd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → { 0 } = { ( 0g ‘ 𝑆 ) } ) |
70 |
41 69
|
difeq12d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝐴 ∖ { 0 } ) = ( ( Base ‘ 𝑆 ) ∖ { ( 0g ‘ 𝑆 ) } ) ) |
71 |
67 70
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → ( Unit ‘ 𝑆 ) = ( ( Base ‘ 𝑆 ) ∖ { ( 0g ‘ 𝑆 ) } ) ) |
72 |
18 19 20
|
isdrng |
⊢ ( 𝑆 ∈ DivRing ↔ ( 𝑆 ∈ Ring ∧ ( Unit ‘ 𝑆 ) = ( ( Base ‘ 𝑆 ) ∖ { ( 0g ‘ 𝑆 ) } ) ) ) |
73 |
31 71 72
|
sylanbrc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) → 𝑆 ∈ DivRing ) |
74 |
30 73
|
impbida |
⊢ ( ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝑆 ∈ DivRing ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { 0 } ) ( 𝐼 ‘ 𝑥 ) ∈ 𝐴 ) ) |