Step |
Hyp |
Ref |
Expression |
1 |
|
issubg.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
df-subg |
⊢ SubGrp = ( 𝑤 ∈ Grp ↦ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ ( 𝑤 ↾s 𝑠 ) ∈ Grp } ) |
3 |
2
|
mptrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
4 |
|
simp1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) → 𝐺 ∈ Grp ) |
5 |
|
fveq2 |
⊢ ( 𝑤 = 𝐺 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝐺 ) ) |
6 |
5 1
|
eqtr4di |
⊢ ( 𝑤 = 𝐺 → ( Base ‘ 𝑤 ) = 𝐵 ) |
7 |
6
|
pweqd |
⊢ ( 𝑤 = 𝐺 → 𝒫 ( Base ‘ 𝑤 ) = 𝒫 𝐵 ) |
8 |
|
oveq1 |
⊢ ( 𝑤 = 𝐺 → ( 𝑤 ↾s 𝑠 ) = ( 𝐺 ↾s 𝑠 ) ) |
9 |
8
|
eleq1d |
⊢ ( 𝑤 = 𝐺 → ( ( 𝑤 ↾s 𝑠 ) ∈ Grp ↔ ( 𝐺 ↾s 𝑠 ) ∈ Grp ) ) |
10 |
7 9
|
rabeqbidv |
⊢ ( 𝑤 = 𝐺 → { 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ ( 𝑤 ↾s 𝑠 ) ∈ Grp } = { 𝑠 ∈ 𝒫 𝐵 ∣ ( 𝐺 ↾s 𝑠 ) ∈ Grp } ) |
11 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
12 |
11
|
pwex |
⊢ 𝒫 𝐵 ∈ V |
13 |
12
|
rabex |
⊢ { 𝑠 ∈ 𝒫 𝐵 ∣ ( 𝐺 ↾s 𝑠 ) ∈ Grp } ∈ V |
14 |
10 2 13
|
fvmpt |
⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) = { 𝑠 ∈ 𝒫 𝐵 ∣ ( 𝐺 ↾s 𝑠 ) ∈ Grp } ) |
15 |
14
|
eleq2d |
⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ 𝑆 ∈ { 𝑠 ∈ 𝒫 𝐵 ∣ ( 𝐺 ↾s 𝑠 ) ∈ Grp } ) ) |
16 |
|
oveq2 |
⊢ ( 𝑠 = 𝑆 → ( 𝐺 ↾s 𝑠 ) = ( 𝐺 ↾s 𝑆 ) ) |
17 |
16
|
eleq1d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝐺 ↾s 𝑠 ) ∈ Grp ↔ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) |
18 |
17
|
elrab |
⊢ ( 𝑆 ∈ { 𝑠 ∈ 𝒫 𝐵 ∣ ( 𝐺 ↾s 𝑠 ) ∈ Grp } ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) |
19 |
11
|
elpw2 |
⊢ ( 𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵 ) |
20 |
19
|
anbi1i |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ↔ ( 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) |
21 |
18 20
|
bitri |
⊢ ( 𝑆 ∈ { 𝑠 ∈ 𝒫 𝐵 ∣ ( 𝐺 ↾s 𝑠 ) ∈ Grp } ↔ ( 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) |
22 |
15 21
|
bitrdi |
⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) ) |
23 |
|
ibar |
⊢ ( 𝐺 ∈ Grp → ( ( 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) ) ) |
24 |
22 23
|
bitrd |
⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) ) ) |
25 |
|
3anass |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ↔ ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) ) |
26 |
24 25
|
bitr4di |
⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) ) |
27 |
3 4 26
|
pm5.21nii |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) |