| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issubg2.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
issubg2.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
issubg2.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
| 4 |
1
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝐵 ) |
| 5 |
|
eqid |
⊢ ( 𝐺 ↾s 𝑆 ) = ( 𝐺 ↾s 𝑆 ) |
| 6 |
5
|
subgbas |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 7 |
5
|
subggrp |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s 𝑆 ) ∈ Grp ) |
| 8 |
|
eqid |
⊢ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) |
| 9 |
8
|
grpbn0 |
⊢ ( ( 𝐺 ↾s 𝑆 ) ∈ Grp → ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ≠ ∅ ) |
| 10 |
7 9
|
syl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ≠ ∅ ) |
| 11 |
6 10
|
eqnetrd |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ≠ ∅ ) |
| 12 |
2
|
subgcl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 13 |
12
|
3expa |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 14 |
13
|
ralrimiva |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 15 |
3
|
subginvcl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) |
| 16 |
14 15
|
jca |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) |
| 17 |
16
|
ralrimiva |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) |
| 18 |
4 11 17
|
3jca |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) |
| 19 |
|
simpl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → 𝐺 ∈ Grp ) |
| 20 |
|
simpr1 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → 𝑆 ⊆ 𝐵 ) |
| 21 |
5 1
|
ressbas2 |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 22 |
20 21
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 23 |
|
fvex |
⊢ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ∈ V |
| 24 |
22 23
|
eqeltrdi |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → 𝑆 ∈ V ) |
| 25 |
5 2
|
ressplusg |
⊢ ( 𝑆 ∈ V → + = ( +g ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 26 |
24 25
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → + = ( +g ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 27 |
|
simpr3 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) |
| 28 |
|
simpl |
⊢ ( ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 29 |
28
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 30 |
27 29
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 31 |
|
oveq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 + 𝑦 ) = ( 𝑢 + 𝑦 ) ) |
| 32 |
31
|
eleq1d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑢 + 𝑦 ) ∈ 𝑆 ) ) |
| 33 |
|
oveq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝑢 + 𝑦 ) = ( 𝑢 + 𝑣 ) ) |
| 34 |
33
|
eleq1d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑢 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑢 + 𝑣 ) ∈ 𝑆 ) ) |
| 35 |
32 34
|
rspc2v |
⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 → ( 𝑢 + 𝑣 ) ∈ 𝑆 ) ) |
| 36 |
30 35
|
syl5com |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( 𝑢 + 𝑣 ) ∈ 𝑆 ) ) |
| 37 |
36
|
3impib |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) → ( 𝑢 + 𝑣 ) ∈ 𝑆 ) |
| 38 |
20
|
sseld |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ( 𝑢 ∈ 𝑆 → 𝑢 ∈ 𝐵 ) ) |
| 39 |
20
|
sseld |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ( 𝑣 ∈ 𝑆 → 𝑣 ∈ 𝐵 ) ) |
| 40 |
20
|
sseld |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ( 𝑤 ∈ 𝑆 → 𝑤 ∈ 𝐵 ) ) |
| 41 |
38 39 40
|
3anim123d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) → ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) |
| 42 |
41
|
imp |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) |
| 43 |
1 2
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 + 𝑣 ) + 𝑤 ) = ( 𝑢 + ( 𝑣 + 𝑤 ) ) ) |
| 44 |
43
|
adantlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑢 + 𝑣 ) + 𝑤 ) = ( 𝑢 + ( 𝑣 + 𝑤 ) ) ) |
| 45 |
42 44
|
syldan |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ) → ( ( 𝑢 + 𝑣 ) + 𝑤 ) = ( 𝑢 + ( 𝑣 + 𝑤 ) ) ) |
| 46 |
|
simpr2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → 𝑆 ≠ ∅ ) |
| 47 |
|
n0 |
⊢ ( 𝑆 ≠ ∅ ↔ ∃ 𝑢 𝑢 ∈ 𝑆 ) |
| 48 |
46 47
|
sylib |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ∃ 𝑢 𝑢 ∈ 𝑆 ) |
| 49 |
20
|
sselda |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝑆 ) → 𝑢 ∈ 𝐵 ) |
| 50 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 51 |
1 2 50 3
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑢 ) + 𝑢 ) = ( 0g ‘ 𝐺 ) ) |
| 52 |
51
|
adantlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑢 ) + 𝑢 ) = ( 0g ‘ 𝐺 ) ) |
| 53 |
49 52
|
syldan |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝑆 ) → ( ( 𝐼 ‘ 𝑢 ) + 𝑢 ) = ( 0g ‘ 𝐺 ) ) |
| 54 |
|
simpr |
⊢ ( ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) |
| 55 |
54
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) |
| 56 |
27 55
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) |
| 57 |
|
fveq2 |
⊢ ( 𝑥 = 𝑢 → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑢 ) ) |
| 58 |
57
|
eleq1d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ↔ ( 𝐼 ‘ 𝑢 ) ∈ 𝑆 ) ) |
| 59 |
58
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) → ( 𝐼 ‘ 𝑢 ) ∈ 𝑆 ) |
| 60 |
56 59
|
sylan |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝑆 ) → ( 𝐼 ‘ 𝑢 ) ∈ 𝑆 ) |
| 61 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝑆 ) → 𝑢 ∈ 𝑆 ) |
| 62 |
30
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 63 |
|
ovrspc2v |
⊢ ( ( ( ( 𝐼 ‘ 𝑢 ) ∈ 𝑆 ∧ 𝑢 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → ( ( 𝐼 ‘ 𝑢 ) + 𝑢 ) ∈ 𝑆 ) |
| 64 |
60 61 62 63
|
syl21anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝑆 ) → ( ( 𝐼 ‘ 𝑢 ) + 𝑢 ) ∈ 𝑆 ) |
| 65 |
53 64
|
eqeltrrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 66 |
48 65
|
exlimddv |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 67 |
1 2 50
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑢 ) = 𝑢 ) |
| 68 |
67
|
adantlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑢 ) = 𝑢 ) |
| 69 |
49 68
|
syldan |
⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ∧ 𝑢 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) + 𝑢 ) = 𝑢 ) |
| 70 |
22 26 37 45 66 69 60 53
|
isgrpd |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → ( 𝐺 ↾s 𝑆 ) ∈ Grp ) |
| 71 |
1
|
issubg |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) |
| 72 |
19 20 70 71
|
syl3anbrc |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 73 |
72
|
ex |
⊢ ( 𝐺 ∈ Grp → ( ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ) |
| 74 |
18 73
|
impbid2 |
⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ) |